Suppr超能文献

使用卷积神经网络识别腹腔镜腹股沟疝修补术中的输精管。

Identification of the Vas Deferens in Laparoscopic Inguinal Hernia Repair Surgery Using the Convolutional Neural Network.

机构信息

Biomedical Information Engineering Lab, The University of Aizu, Aizuwakamatsu, Japan.

Department of General Surgery, People's Hospital of Hannan District, Hannan District, Wuhan, China.

出版信息

J Healthc Eng. 2021 Sep 22;2021:5578089. doi: 10.1155/2021/5578089. eCollection 2021.

Abstract

Inguinal hernia repair is one of the most frequently conducted surgical procedures worldwide. Laparoscopic inguinal hernia repair is considered to be technically challenging. Artificial intelligence technology has made significant progress in medical imaging, but its application in laparoscopic surgery has not been widely carried out. Our aim is to detect vas deferens images in laparoscopic inguinal hernial repair using the convolutional neural network (CNN) and help surgeons to identify the vas deferens in time. We collected surgery videos from 35 patients with inguinal hernia who underwent laparoscopic hernia repair. We classified and labeled the images of the vas deferens and used the CNN to learn the image features. Totally, 2,600 images (26 patients) were labeled for training and validating the neural network and 1,200 images (6 patients) and 6 short video clips (3 patients) for testing. We adjusted the model parameters and tested the performance of the model under different confidence levels and IoU and used the chi-square to analyze the statistical difference in the video test dataset. We evaluated the model performance by calculating the true positive rate (TPR), true negative rate (TNR), accuracy (ACC), positive predictive value (PPV), and 1-score at different confidence levels of 0.1 to 0.9. In confidence level 0.4, the results were TPR 90.61%, TNR 98.67%, PPV 98.57%, ACC 94.61%, and 1 94.42%, respectively. The average precision (AP) was 92.38% at IoU 0.3. In the video test dataset, the average values of TPR and TNR were 90.11% and 95.76%, respectively, and there was no significant difference among the patients. The results suggest that the CNN can quickly and accurately identify and label vas deferens images in laparoscopic inguinal hernia repair.

摘要

腹股沟疝修补术是全球最常进行的手术之一。腹腔镜腹股沟疝修补术被认为具有技术挑战性。人工智能技术在医学成像方面取得了重大进展,但尚未广泛应用于腹腔镜手术。我们的目标是使用卷积神经网络(CNN)检测腹腔镜腹股沟疝修补术中的输精管图像,帮助外科医生及时识别输精管。我们从 35 名接受腹腔镜疝修补术的腹股沟疝患者的手术视频中收集数据。我们对输精管图像进行分类和标记,并使用 CNN 学习图像特征。总共对 2600 张图像(26 名患者)进行了标记,用于训练和验证神经网络,对 1200 张图像(6 名患者)和 6 个短视频片段(3 名患者)进行了测试。我们调整了模型参数,并在不同置信度和 IoU 下测试了模型的性能,使用卡方检验分析了视频测试数据集的统计差异。我们通过计算不同置信度(0.1 至 0.9)下的真阳性率(TPR)、真阴性率(TNR)、准确率(ACC)、阳性预测值(PPV)和 1 分来评估模型性能。在置信度为 0.4 时,结果分别为 TPR 90.61%、TNR 98.67%、PPV 98.57%、ACC 94.61%和 1 分 94.42%。IoU 为 0.3 时平均精度(AP)为 92.38%。在视频测试数据集中,TPR 和 TNR 的平均值分别为 90.11%和 95.76%,患者之间无显著差异。结果表明,CNN 可以快速准确地识别和标记腹腔镜腹股沟疝修补术中的输精管图像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed04/8481069/e5de58ecd3ea/JHE2021-5578089.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验