Suppr超能文献

低密度机载激光扫描数据中高压电力线结构的分类——针对广泛非城市区域采集的数据

Classification of high-voltage power line structures in low density ALS data acquired over broad non-urban areas.

作者信息

Roussel Jean-Romain, Achim Alexis, Auty David

机构信息

Centre de Recherche Sur les Matériaux Renouvelables, Département des Sciences du Bois et de la Forêt, Université Laval, Québec, Canada.

School of Forestry, Northern Arizona University, Flagstaff, Arizona, United States of America.

出版信息

PeerJ Comput Sci. 2021 Aug 31;7:e672. doi: 10.7717/peerj-cs.672. eCollection 2021.

Abstract

Airborne laser scanning (ALS) has gained importance over recent decades for multiple uses related to the cartography of landscapes. Processing ALS data over large areas for forest resource estimation and ecological assessments requires efficient algorithms to filter out some points from the raw data and remove human-made structures that would otherwise be mistaken for natural objects. In this paper, we describe an algorithm developed for the segmentation and cleaning of electrical network facilities in low density (2.5 to 13 points/m) ALS point clouds. The algorithm was designed to identify transmission towers, conductor wires and earth wires from high-voltage power lines in natural landscapes. The method is based on two priors . (1) the availability of a map of the high-voltage power lines across the area of interest and (2) knowledge of the type of transmission towers that hold the conductors along a given power line. It was tested on a network totalling 200 km of wires supported by 415 transmission towers with diverse topographies and topologies with an accuracy of 98.6%. This work will help further the automated detection capacity of power line structures, which had previously been limited to high density point clouds in small, urbanised areas. The method is open-source and available online.

摘要

近几十年来,机载激光扫描(ALS)在与景观制图相关的多种用途中变得越来越重要。为了进行森林资源估计和生态评估而对大面积的ALS数据进行处理,需要高效的算法来从原始数据中滤除一些点,并去除那些可能被误认为自然物体的人造结构。在本文中,我们描述了一种为低密度(2.5至13点/平方米)ALS点云的电网设施分割和清理而开发的算法。该算法旨在从自然景观中的高压电力线中识别输电塔、导线和地线。该方法基于两个先验条件:(1)在感兴趣区域内有高压电力线地图;(2)了解沿给定电力线支撑导线的输电塔类型。该算法在一个由415座输电塔支撑的总长200公里的电网进行了测试,该电网具有不同的地形和拓扑结构,准确率达到98.6%。这项工作将有助于进一步提高电力线结构的自动检测能力,此前该能力仅限于小型城市化区域的高密度点云。该方法是开源的,可在线获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e4a/8444095/f4e9038f5ff0/peerj-cs-07-672-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验