Suppr超能文献

与未来自动驾驶车辆和出行服务相关的美国车辆乘坐趋势。

U.S. vehicle occupancy trends relevant to future automated vehicles and mobility services.

作者信息

Klinich Kathleen D, Leslie Andrew, Hariya Sumie, Flannagan Carol A C, Reed Matthew P, Hallman Jason

机构信息

Transportation Research Institute, University of Michigan, Ann Arbor, Michigan.

Collaborative Safety Research Center, Toyota Motor Engineering & Manufacturing North America, Inc., Ann Arbor, Michigan.

出版信息

Traffic Inj Prev. 2021;22(sup1):S116-S121. doi: 10.1080/15389588.2021.1964491. Epub 2021 Oct 4.

Abstract

OBJECTIVE

Identifying current occupant travel patterns can inform decision making regarding the design, regulation, and occupant protection systems helpful for automated vehicle systems and mobility services.

METHODS

Two travel data sets were analyzed to quantify travel patterns: the 2017 National Household Travel Survey (NHTS), which provides data on household trips logged for a 24-h period, and the 2011-2015 National Automotive Sampling System-General Estimates System (NASS-GES), which contains data sampled from police-reported crashes. Analysis identified trends with driver age and gender, occupant age and gender, time of day, day of week, trip purpose, trip duration, vehicle type, as well as occupant role as solo driver, driver of others, single passenger, or multiple passengers.

RESULTS

In NHTS, the median trip duration is 15 min; only 10% of trips last longer than 40 min. Trip duration does not vary with occupant role or vehicle type. Variations with trip time of day and day of week show a unimodal pattern for weekends, as well as weekday trips for those aged 55 years and older and non-solo occupants aged 18 to 29 years. Other occupant groups have a bimodal weekday travel pattern with peak trips corresponding to morning and evening rush hours.In GES, approximately half of occupants are solo drivers. Female drivers aged 55 and older travel alone 60% of the time, and drivers under age 18 and female drivers aged 30 to 54 drive alone on less than 45% of trips. Approximately 13% of occupants are single passengers, and 16% travel with a driver and at least 1 other passenger. About 16% of occupants are front seat passengers.

CONCLUSIONS

This analysis of vehicle occupancy provides insights on what ridership of future automated vehicles and expanded ride-hailing services may look like. Because half of occupants are solo drivers, only 16% are multiple passengers, and median trip length is just 15 min, proposed alternative seating arrangements intended to promote comfort and passenger interaction may not represent the typical future vehicle use case in the United States. Knowledge of current occupancy patterns can help automated vehicle designers and regulators develop safe seating scenarios that meet customer needs.

摘要

目的

识别当前乘客的出行模式可为有关自动车辆系统和出行服务的设计、监管及乘客保护系统的决策提供信息。

方法

分析了两个出行数据集以量化出行模式:2017年全国家庭出行调查(NHTS),提供了记录的24小时家庭出行数据;以及2011 - 2015年国家汽车抽样系统 - 一般估计系统(NASS - GES),其中包含从警方报告的撞车事故中抽样的数据。分析确定了与驾驶员年龄和性别、乘客年龄和性别、一天中的时间、一周中的日期、出行目的、出行时长、车辆类型以及乘客角色(如独自驾驶者、搭载他人的驾驶者、单人乘客或多名乘客)相关的趋势。

结果

在NHTS中,出行时长的中位数为15分钟;只有10%的出行持续时间超过40分钟。出行时长不随乘客角色或车辆类型而变化。一天中出行时间和一周中日期的变化显示,周末以及55岁及以上人群和18至29岁非独自乘车乘客的工作日出行呈单峰模式。其他乘客群体在工作日有双峰出行模式,高峰出行对应早晚高峰时段。在GES中,约一半乘客为独自驾驶者。55岁及以上女性驾驶者60%的时间独自出行,18岁以下驾驶者和30至54岁女性驾驶者独自出行的比例不到45%。约13%的乘客为单人乘客,16%与一名驾驶者及至少一名其他乘客同行。约16%的乘客为前排乘客。

结论

对车辆乘坐情况的这一分析为未来自动车辆和扩展的拼车服务的乘客构成提供了见解。由于一半乘客是独自驾驶者,只有16%是多名乘客,且出行时长中位数仅为15分钟,旨在提升舒适度和乘客互动的提议替代座位安排可能并不代表美国未来典型的车辆使用情况。了解当前乘坐模式有助于自动车辆设计师和监管机构制定满足客户需求的安全座位方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验