Suppr超能文献

结构洞察 I 型 CRISPR-Cas 系统被抗 CRISPR 蛋白失活的机制。

Structural insights into the inactivation of the type I-F CRISPR-Cas system by anti-CRISPR proteins.

机构信息

Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.

Jiangxi Provincial Key Laboratory of Natural Active Pharmaceutical Constituents, Department of Chemistry and Bioengineering, Yichun University, Yichun, China.

出版信息

RNA Biol. 2021 Nov 12;18(sup2):562-573. doi: 10.1080/15476286.2021.1985347. Epub 2021 Oct 4.

Abstract

Phage infection is one of the major threats to prokaryotic survival, and prokaryotes in turn have evolved multiple protection approaches to fight against this challenge. Various delicate mechanisms have been discovered from this eternal arms race, among which the CRISPR-Cas systems are the prokaryotic adaptive immune systems and phages evolve diverse anti-CRISPR (Acr) proteins to evade this immunity. Until now, about 90 families of Acr proteins have been identified, out of which 24 families were verified to fight against subtype I-F CRISPR-Cas systems. Here, we review the structural and biochemical mechanisms of the characterized type I-F Acr proteins, classify their inhibition mechanisms into two major groups and provide insights for future studies of other Acr proteins. Understanding Acr proteins in this context will lead to a variety of practical applications in genome editing and also provide exciting insights into the molecular arms race between prokaryotes and phages.

摘要

噬菌体感染是原核生物生存的主要威胁之一,而原核生物则进化出多种保护措施来应对这一挑战。在这场永恒的军备竞赛中,人们发现了各种微妙的机制,其中 CRISPR-Cas 系统是原核生物适应性免疫系统,而噬菌体则进化出多种抗 CRISPR(Acr)蛋白来逃避这种免疫。到目前为止,已经鉴定出约 90 种 Acr 蛋白家族,其中 24 种家族被证实可对抗 I-F 型 CRISPR-Cas 系统。在这里,我们回顾了已鉴定的 I-F 型 Acr 蛋白的结构和生化机制,将其抑制机制分为两大类,并为其他 Acr 蛋白的未来研究提供了思路。在这种情况下了解 Acr 蛋白将导致基因组编辑的各种实际应用,并为原核生物和噬菌体之间的分子军备竞赛提供令人兴奋的见解。

相似文献

1
Structural insights into the inactivation of the type I-F CRISPR-Cas system by anti-CRISPR proteins.
RNA Biol. 2021 Nov 12;18(sup2):562-573. doi: 10.1080/15476286.2021.1985347. Epub 2021 Oct 4.
2
Keeping crispr in check: diverse mechanisms of phage-encoded anti-crisprs.
FEMS Microbiol Lett. 2019 May 1;366(9). doi: 10.1093/femsle/fnz098.
3
Structural and mechanistic insights into the CRISPR inhibition of AcrIF7.
Nucleic Acids Res. 2020 Sep 25;48(17):9959-9968. doi: 10.1093/nar/gkaa690.
4
Non-canonical inhibition strategies and structural basis of anti-CRISPR proteins targeting type I CRISPR-Cas systems.
J Mol Biol. 2023 Apr 1;435(7):167996. doi: 10.1016/j.jmb.2023.167996. Epub 2023 Feb 6.
5
Structure-based functional mechanisms and biotechnology applications of anti-CRISPR proteins.
Nat Rev Mol Cell Biol. 2021 Aug;22(8):563-579. doi: 10.1038/s41580-021-00371-9. Epub 2021 Jun 4.
6
Inhibition mechanisms of AcrF9, AcrF8, and AcrF6 against type I-F CRISPR-Cas complex revealed by cryo-EM.
Proc Natl Acad Sci U S A. 2020 Mar 31;117(13):7176-7182. doi: 10.1073/pnas.1922638117. Epub 2020 Mar 13.
9
Phage anti-CRISPR control by an RNA- and DNA-binding helix-turn-helix protein.
Nature. 2024 Jul;631(8021):670-677. doi: 10.1038/s41586-024-07644-1. Epub 2024 Jul 10.
10
Disarming of type I-F CRISPR-Cas surveillance complex by anti-CRISPR proteins AcrIF6 and AcrIF9.
Sci Rep. 2022 Sep 15;12(1):15548. doi: 10.1038/s41598-022-19797-y.

引用本文的文献

1
Armed Phages: A New Weapon in the Battle Against Antimicrobial Resistance.
Viruses. 2025 Jun 27;17(7):911. doi: 10.3390/v17070911.
2
Current Updates of CRISPR/Cas System and Anti-CRISPR Proteins: Innovative Applications to Improve the Genome Editing Strategies.
Int J Nanomedicine. 2024 Oct 9;19:10185-10212. doi: 10.2147/IJN.S479068. eCollection 2024.
3
Bacteriophage strategies for overcoming host antiviral immunity.
Front Microbiol. 2023 Jun 8;14:1211793. doi: 10.3389/fmicb.2023.1211793. eCollection 2023.

本文引用的文献

1
Highly accurate protein structure prediction for the human proteome.
Nature. 2021 Aug;596(7873):590-596. doi: 10.1038/s41586-021-03828-1. Epub 2021 Jul 22.
2
Highly accurate protein structure prediction with AlphaFold.
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
4
Anti-CRISPR AcrIF9 functions by inducing the CRISPR-Cas complex to bind DNA non-specifically.
Nucleic Acids Res. 2021 Apr 6;49(6):3381-3393. doi: 10.1093/nar/gkab092.
5
Anti-CRISPRs go viral: The infection biology of CRISPR-Cas inhibitors.
Cell Host Microbe. 2021 May 12;29(5):704-714. doi: 10.1016/j.chom.2020.12.007. Epub 2021 Jan 13.
6
Anti-CRISPR AcrIE2 Binds the Type I-E CRISPR-Cas Complex But Does Not Block DNA Binding.
J Mol Biol. 2021 Feb 5;433(3):166759. doi: 10.1016/j.jmb.2020.166759. Epub 2020 Dec 16.
8
CRISPR RNA-guided integrases for high-efficiency, multiplexed bacterial genome engineering.
Nat Biotechnol. 2021 Apr;39(4):480-489. doi: 10.1038/s41587-020-00745-y. Epub 2020 Nov 23.
9
10
A compact Cascade-Cas3 system for targeted genome engineering.
Nat Methods. 2020 Dec;17(12):1183-1190. doi: 10.1038/s41592-020-00980-w. Epub 2020 Oct 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验