Division of Cardiac Surgery, Massachusetts General Hospital and Corrigan Minehan Heart Center, Boston, Mass.
Division of Cardiology, Massachusetts General Hospital and Corrigan Minehan Heart Center, Boston, Mass; Center for Systems Biology, Massachusetts General Hospital, Boston, Mass; Research Laboratory for Electronics, Massachusetts Institute of Technology, Cambridge, Mass.
J Thorac Cardiovasc Surg. 2023 Apr;165(4):1449-1459.e15. doi: 10.1016/j.jtcvs.2021.09.010. Epub 2021 Sep 14.
Current cardiac surgery risk models do not address a substantial fraction of procedures. We sought to create models to predict the risk of operative mortality for an expanded set of cases.
Four supervised machine learning models were trained using preoperative variables present in the Society of Thoracic Surgeons (STS) data set of the Massachusetts General Hospital to predict and classify operative mortality in procedures without STS risk scores. A total of 424 (5.5%) mortality events occurred out of 7745 cases. Models included logistic regression with elastic net regularization (LogReg), support vector machine, random forest (RF), and extreme gradient boosted trees (XGBoost). Model discrimination was assessed via area under the receiver operating characteristic curve (AUC), and calibration was assessed via calibration slope and expected-to-observed event ratio. External validation was performed using STS data sets from Brigham and Women's Hospital (BWH) and the Johns Hopkins Hospital (JHH).
Models performed comparably with the highest mean AUC of 0.83 (RF) and expected-to-observed event ratio of 1.00. On external validation, the AUC was 0.81 in BWH (RF) and 0.79 in JHH (LogReg/RF). Models trained and applied on the same institution's data achieved AUCs of 0.81 (BWH: LogReg/RF/XGBoost) and 0.82 (JHH: LogReg/RF/XGBoost).
Machine learning models trained on preoperative patient data can predict operative mortality at a high level of accuracy for cardiac surgical procedures without established risk scores. Such procedures comprise 23% of all cardiac surgical procedures nationwide. This work also highlights the value of using local institutional data to train new prediction models that account for institution-specific practices.
目前的心脏外科风险模型无法涵盖很大一部分手术。我们试图创建模型来预测一组扩展病例的手术死亡率风险。
使用麻省总医院胸外科医师学会(STS)数据集的术前变量,训练了四个监督机器学习模型,以预测和分类无 STS 风险评分的手术中的手术死亡率。在 7745 例病例中,共有 424 例(5.5%)死亡事件发生。模型包括逻辑回归与弹性网正则化(LogReg)、支持向量机、随机森林(RF)和极端梯度提升树(XGBoost)。通过接收者操作特征曲线下的面积(AUC)评估模型的区分度,通过校准斜率和期望观察到的事件比评估校准。使用 Brigham and Women's Hospital(BWH)和 Johns Hopkins Hospital(JHH)的 STS 数据集进行外部验证。
模型的表现相当,最高平均 AUC 为 0.83(RF)和期望观察到的事件比为 1.00。在外部验证中,BWH 的 AUC 为 0.81(RF),JHH 的 AUC 为 0.79(LogReg/RF)。在同一机构的数据上进行训练和应用的模型的 AUC 分别为 0.81(BWH:LogReg/RF/XGBoost)和 0.82(JHH:LogReg/RF/XGBoost)。
基于术前患者数据训练的机器学习模型可以以高精度预测无既定风险评分的心脏外科手术的手术死亡率。这类手术占全国所有心脏外科手术的 23%。这项工作还强调了使用本地机构数据来训练新的预测模型的价值,这些模型可以考虑到机构特定的实践。