Suppr超能文献

术中数据对腹部手术后死亡率风险预测的影响。

Impact of Intraoperative Data on Risk Prediction for Mortality After Intra-Abdominal Surgery.

机构信息

From the Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York.

Department of Medicine, Division of Nephrology, Columbia University Medical Center, New York, New York.

出版信息

Anesth Analg. 2022 Jan 1;134(1):102-113. doi: 10.1213/ANE.0000000000005694.

Abstract

BACKGROUND

Risk prediction models for postoperative mortality after intra-abdominal surgery have typically been developed using preoperative variables. It is unclear if intraoperative data add significant value to these risk prediction models.

METHODS

With IRB approval, an institutional retrospective cohort of intra-abdominal surgery patients in the 2005 to 2015 American College of Surgeons National Surgical Quality Improvement Program was identified. Intraoperative data were obtained from the electronic health record. The primary outcome was 30-day mortality. We evaluated the performance of machine learning algorithms to predict 30-day mortality using: 1) baseline variables and 2) baseline + intraoperative variables. Algorithms evaluated were: 1) logistic regression with elastic net selection, 2) random forest (RF), 3) gradient boosting machine (GBM), 4) support vector machine (SVM), and 5) convolutional neural networks (CNNs). Model performance was evaluated using the area under the receiver operator characteristic curve (AUROC). The sample was randomly divided into a training/testing split with 80%/20% probabilities. Repeated 10-fold cross-validation identified the optimal model hyperparameters in the training dataset for each model, which were then applied to the entire training dataset to train the model. Trained models were applied to the test cohort to evaluate model performance. Statistical significance was evaluated using P < .05.

RESULTS

The training and testing cohorts contained 4322 and 1079 patients, respectively, with 62 (1.4%) and 15 (1.4%) experiencing 30-day mortality, respectively. When using only baseline variables to predict mortality, all algorithms except SVM (area under the receiver operator characteristic curve [AUROC], 0.83 [95% confidence interval {CI}, 0.69-0.97]) had AUROC >0.9: GBM (AUROC, 0.96 [0.94-1.0]), RF (AUROC, 0.96 [0.92-1.0]), CNN (AUROC, 0.96 [0.92-0.99]), and logistic regression (AUROC, 0.95 [0.91-0.99]). AUROC significantly increased with intraoperative variables with CNN (AUROC, 0.97 [0.96-0.99]; P = .047 versus baseline), but there was no improvement with GBM (AUROC, 0.97 [0.95-0.99]; P = .3 versus baseline), RF (AUROC, 0.96 [0.93-1.0]; P = .5 versus baseline), and logistic regression (AUROC, 0.94 [0.90-0.99]; P = .6 versus baseline).

CONCLUSIONS

Postoperative mortality is predicted with excellent discrimination in intra-abdominal surgery patients using only preoperative variables in various machine learning algorithms. The addition of intraoperative data to preoperative data also resulted in models with excellent discrimination, but model performance did not improve.

摘要

背景

用于预测腹部手术后死亡率的风险预测模型通常是使用术前变量开发的。目前尚不清楚术中数据是否为这些风险预测模型提供了显著的附加价值。

方法

在美国外科医师学会国家外科质量改进计划 2005 年至 2015 年的机构回顾性腹部手术患者队列中,获得了机构审查委员会的批准。术中数据来自电子健康记录。主要结果是 30 天死亡率。我们评估了机器学习算法使用以下方法预测 30 天死亡率的表现:1)基线变量和 2)基线+术中变量。评估的算法为:1)逻辑回归与弹性网选择,2)随机森林(RF),3)梯度提升机(GBM),4)支持向量机(SVM)和 5)卷积神经网络(CNN)。使用接收器工作特征曲线下的面积(AUROC)评估模型性能。样本随机分为训练/测试分割,概率分别为 80%/20%。重复 10 倍交叉验证确定了每个模型在训练数据集中的最佳模型超参数,然后将这些超参数应用于整个训练数据集以训练模型。将训练好的模型应用于测试队列,以评估模型性能。使用 P<0.05 评估统计学意义。

结果

训练和测试队列分别包含 4322 名和 1079 名患者,分别有 62 名(1.4%)和 15 名(1.4%)患者在 30 天内死亡。仅使用基线变量预测死亡率时,除 SVM(接收器工作特征曲线下的面积[AUROC],0.83 [0.69-0.97])外,所有算法的 AUROC>0.9:GBM(AUROC,0.96 [0.94-1.0]),RF(AUROC,0.96 [0.92-1.0]),CNN(AUROC,0.96 [0.92-0.99])和逻辑回归(AUROC,0.95 [0.91-0.99])。使用术中变量时,AUROC 显著增加,CNN 为 0.97 [0.96-0.99](P=0.047 与基线相比),但 GBM(AUROC,0.97 [0.95-0.99]),RF(AUROC,0.96 [0.93-1.0])和逻辑回归(AUROC,0.94 [0.90-0.99])无改善(P=0.5 与基线相比)。

结论

在腹部手术患者中,仅使用术前变量即可使用各种机器学习算法以出色的区分度预测术后死亡率。将术中数据添加到术前数据中也可以得到具有出色区分度的模型,但模型性能并未提高。

相似文献

5
Deep-learning model for predicting 30-day postoperative mortality.深度学习模型预测 30 天术后死亡率。
Br J Anaesth. 2019 Nov;123(5):688-695. doi: 10.1016/j.bja.2019.07.025. Epub 2019 Sep 23.

引用本文的文献

本文引用的文献

7
Deep-learning model for predicting 30-day postoperative mortality.深度学习模型预测 30 天术后死亡率。
Br J Anaesth. 2019 Nov;123(5):688-695. doi: 10.1016/j.bja.2019.07.025. Epub 2019 Sep 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验