Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
Nat Commun. 2021 Jun 15;12(1):3635. doi: 10.1038/s41467-021-23838-x.
Neuronal activity in sensory cortex fluctuates over time and across repetitions of the same input. This variability is often considered detrimental to neural coding. The theory of neural sampling proposes instead that variability encodes the uncertainty of perceptual inferences. In primary visual cortex (V1), modulation of variability by sensory and non-sensory factors supports this view. However, it is unknown whether V1 variability reflects the statistical structure of visual inputs, as would be required for inferences correctly tuned to the statistics of the natural environment. Here we combine analysis of image statistics and recordings in macaque V1 to show that probabilistic inference tuned to natural image statistics explains the widely observed dependence between spike count variance and mean, and the modulation of V1 activity and variability by spatial context in images. Our results show that the properties of a basic aspect of cortical responses-their variability-can be explained by a probabilistic representation tuned to naturalistic inputs.
感觉皮层中的神经元活动随时间和同一输入的重复而波动。这种可变性通常被认为对神经编码有害。相反,神经采样理论提出,可变性编码了感知推断的不确定性。在初级视觉皮层 (V1) 中,感觉和非感觉因素对可变性的调制支持了这一观点。然而,目前尚不清楚 V1 的可变性是否反映了视觉输入的统计结构,因为这是正确推断自然环境统计所需的。在这里,我们结合对猕猴 V1 的图像统计分析和记录,表明针对自然图像统计进行概率推断可以解释广泛观察到的尖峰计数方差与均值之间的关系,以及空间上下文对 V1 活动和可变性的调制。我们的结果表明,可以通过针对自然输入进行调整的概率表示来解释皮质反应基本方面的特性——其可变性。