Firganek Daniel, Donten Mateusz L, Van der Bruggen Bart
Amer-Sil S.A., 61 Rue d'Olm, L-8281Kehlen, Luxembourg.
Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
Ind Eng Chem Res. 2023 Sep 21;62(39):15928-15939. doi: 10.1021/acs.iecr.3c02174. eCollection 2023 Oct 4.
This work presents a systematic approach to formulating UV curable ionomer coatings that can be used as ion-exchange membranes when they are applied on porous substrates. Ion-exchange membranes fabricated in this way can be a cost-effective alternative to perfluorosulfonic acid membranes, such as Nafion and similar thin ionomer film membranes. Hierarchically structured coated membranes find applications for energy storage and conversion (organic redox flow batteries and artificial photosynthesis cells) and separation processes (electrodialysis). Designing the ionomer precursor for membrane formulation requires the introduction of compounds with drastically different properties into a liquid mixture. Hansen solubility theory was used to find the solvents to compatibilize main formulation components: acrylic sulfone salt (3-sulfopropyl methacrylate potassium salt) and hexafunctional polyester acrylate cross-linker (Ebecryl 830), otherwise nonmiscible or mutely soluble. Among the identified suitable solvents, acrylic acid and acetic acid allowed for optimal mixing of the components and reaching the highest levels of sulfonic group content, providing the desired ion-exchange capacity. Interestingly, they represented a case of a reactive and nonreactive solvent since acrylic acid was built into the ionomer during the UV curing step. Properties of the two membrane variants were compared. Samples fabricated with acetic acid exhibit improved handleability compared with the case of acrylic acid. Acetic acid yielded a lower area-specific resistance (6.4 ± 0.17 Ohm·cm) compared to acrylic acid (12.1 ± 0.16 Ohm·cm in 0.5 M NaCl). This was achieved without severely suppressing the selectivity of the membrane, which was standing at 93.4 and 96.4% for preparation with acetic and acrylic acid, respectively.
这项工作提出了一种系统的方法来制备可紫外光固化的离聚物涂层,当将其应用于多孔基材上时,可用作离子交换膜。以这种方式制造的离子交换膜可以成为全氟磺酸膜(如Nafion和类似的薄离聚物薄膜膜)的一种经济高效的替代品。具有分层结构的涂层膜可用于能量存储和转换(有机氧化还原液流电池和人工光合作用电池)以及分离过程(电渗析)。设计用于膜制备的离聚物前体需要将具有截然不同性质的化合物引入液体混合物中。使用汉森溶解度理论来寻找使主要配方成分(丙烯酸砜盐(甲基丙烯酸3 - 磺丙酯钾盐)和六官能聚酯丙烯酸酯交联剂(埃贝斯克里尔830))相容的溶剂,否则它们是不混溶或微溶的。在确定的合适溶剂中,丙烯酸和乙酸能够使各成分实现最佳混合,并达到最高的磺酸基团含量水平,从而提供所需的离子交换容量。有趣的是,它们代表了一种活性和非活性溶剂的情况,因为丙烯酸在紫外光固化步骤中被并入离聚物中。比较了两种膜变体的性能。与使用丙烯酸的情况相比,用乙酸制备的样品表现出更好的可操作性。与丙烯酸(在0.5 M NaCl中为12.1±0.16欧姆·厘米)相比,乙酸产生的面积比电阻更低(6.4±0.17欧姆·厘米)。在不严重抑制膜选择性的情况下实现了这一点,用乙酸和丙烯酸制备的膜选择性分别为93.4%和96.4%。