Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, China.
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, China.
J Mater Chem B. 2021 Oct 6;9(38):7979-7990. doi: 10.1039/d1tb01236c.
Nerve guide conduits (NGCs) can replace autogenous nerve grafting in the treatment of peripheral nerve system (PNS) injury. However, the modulus of polyurethane NGCs that affects the outcome of PNS repair has been rarely elucidated . In this study, we developed biodegradable waterborne polyurethane (BWPU) NGCs with an outer BWPU membrane and an inner three-dimensional scaffold structure. The mechanical properties of BWPU NGCs can be modified by adjusting the molar content of polyethylene glycol (PEG) in the soft segments within the BWPU. Two types of BWPU NGCs with different moduli were prepared, containing 17% and 25% PEG in BWPU (termed as BWPU 17 NGCs and BWPU 25 NGCs, respectively). In rat sciatic nerves with 10-mm transected injury, mechanically stronger BWPU 17 NGCs exhibited superior nerve repair, which was similar to that obtained by the current gold standard autograft implantation, whereas weaker BWPU 25 NGCs displayed an unsatisfactory effect. Histological results revealed that both BWPU NGCs had anti-inflammatory effects and altered the activation state of macrophages to M2 phenotypes to enhance PNS regeneration. The analysis of growth-associated protein 43 expression, which regulates axon growth, revealed that the mechanical properties of BWPU NGCs influence the outcome of PNS regeneration by affecting the formation and extension of axons. These findings suggest that the mechanical properties of NGCs could play a key role in regulating PNS repair and should be considered in future biomaterial NGC designs.
神经导管(Nerve guide conduits,NGCs)可在周围神经系统(Peripheral Nervous System,PNS)损伤的治疗中替代自体神经移植。然而,影响 PNS 修复效果的聚氨酯 NGC 模量却鲜有报道。在本研究中,我们制备了一种具有外层水性聚氨酯(Biodegradable Waterborne Polyurethane,BWPU)膜和内层三维支架结构的可生物降解 BWPU NGC。通过调整 BWPU 中软段聚乙二醇(Polyethylene Glycol,PEG)的摩尔含量,可以调节 BWPU NGC 的力学性能。我们制备了两种模量不同的 BWPU NGC,其中 BWPU 中含有 17%和 25%PEG(分别命名为 BWPU 17 NGCs 和 BWPU 25 NGCs)。在大鼠坐骨神经 10mm 切断损伤模型中,力学性能更强的 BWPU 17 NGCs 表现出更优的神经修复效果,与目前的金标准自体移植植入相当,而力学性能较弱的 BWPU 25 NGCs 则效果不佳。组织学结果表明,两种 BWPU NGC 均具有抗炎作用,并将巨噬细胞的激活状态转变为 M2 表型,从而增强 PNS 再生。对生长相关蛋白 43(Growth-Associated Protein 43,GAP-43)表达的分析表明,GAP-43 调控轴突生长,而 NGCs 的力学性能通过影响轴突的形成和延伸来影响 PNS 再生的结果。这些发现提示,NGC 的力学性能可能在调控 PNS 修复中发挥关键作用,在未来的生物材料 NGC 设计中应予以考虑。