School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
Phys Chem Chem Phys. 2021 Sep 14;23(34):18378-18392. doi: 10.1039/d1cp03137f. Epub 2021 Aug 19.
The polymerization of photoexcited N-ethylcarbazole (N-EC) in the presence of an electron acceptor begins with an electron transfer (ET) step to generate a radical cation of N-EC (N-EC˙). Here, the production of N-EC˙ is studied on picosecond to nanosecond timescales after N-EC photoexcitation at a wavelength λ = 345 nm using transient electronic and vibrational absorption spectroscopy. The kinetics and mechanisms of ET to diphenyliodonium hexafluorophosphate (PhIPF) or para-alkylated variants are examined in dichloromethane (DCM) and acetonitrile (ACN) solutions. The generation of N-EC˙ is well described by a diffusional kinetic model based on Smoluchowski theory: with PhIPF, the derived bimolecular rate coefficient for ET is k = (1.8 ± 0.5) × 10 M s in DCM, which is consistent with diffusion-limited kinetics. This ET occurs from the first excited singlet (S) state of N-EC, in competition with intersystem crossing to populate the triplet (T) state, from which ET may also arise. A faster component of the ET reaction suggests pre-formation of a ground-state complex between N-EC and the electron acceptor. In ACN, the contribution from pre-reaction complexes is smaller, and the derived ET rate coefficient is k = (1.0 ± 0.3) × 10 M s. Corresponding measurements for solutions of photoexcited 9-phenylcarbazole (9-PC) and PhIPF give k = (5 ± 1) × 10 M s in DCM. Structural modifications of the electron acceptor to increase its steric bulk reduce the magnitude of k: methyl and t-butyl additions to the para positions of the phenyl rings (para MePhIPF and t-butyl-PhIPF) respectively give k = (1.2 ± 0.3) × 10 M s and k = (5.4 ± 1.5) × 10 M s for reaction with photoexcited N-EC in DCM. These reductions in k are attributed to slower rates of diffusion or to steric constraints in the ET reaction.
在电子受体存在的情况下,光激发的 N-乙基咔唑(N-EC)的聚合反应始于电子转移(ET)步骤,生成 N-EC 的自由基阳离子(N-EC˙)。在这里,在波长为 345nm 时用光激发 N-EC 后,使用瞬态电子和振动吸收光谱在皮秒到纳秒的时间尺度上研究了 N-EC˙的生成。在二氯甲烷(DCM)和乙腈(ACN)溶液中,研究了 N-EC 与二苯基碘鎓六氟磷酸盐(PhIPF)或对位烷基化变体的 ET 动力学和机制。N-EC˙的生成很好地描述为基于 Smoluchowski 理论的扩散动力学模型:对于 PhIPF,在 DCM 中 ET 的双分子速率系数 k =(1.8±0.5)×10 M s,这与扩散限制动力学一致。这种 ET 是从 N-EC 的第一激发单线态(S)态发生的,与系间窜越竞争以填充三重态(T)态,ET 也可能由此发生。ET 反应的更快组分表明在 N-EC 和电子受体之间预先形成了基态配合物。在 ACN 中,预反应配合物的贡献较小,得到的 ET 速率系数 k =(1.0±0.3)×10 M s。对于光激发的 9-苯基咔唑(9-PC)和 PhIPF 在 DCM 中的溶液进行相应的测量,得到 k =(5±1)×10 M s。电子受体结构修饰以增加其空间位阻会降低 k 的大小:苯环对位甲基和叔丁基的添加(para-MePhIPF 和 t-butyl-PhIPF)分别使 k =(1.2±0.3)×10 M s 和 k =(5.4±1.5)×10 M s,用于在 DCM 中与光激发的 N-EC 反应。这些 k 的降低归因于扩散速率较慢或 ET 反应中的空间位阻。