Suppr超能文献

AP2/ERF,植物中一个重要的与冷胁迫相关的转录因子家族:综述

AP2/ERF, an important cold stress-related transcription factor family in plants: A review.

作者信息

Ritonga Faujiah Nurhasanah, Ngatia Jacob Njaramba, Wang Yiran, Khoso Muneer Ahmed, Farooq Umar, Chen Su

机构信息

State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040 China.

College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, 150040 China.

出版信息

Physiol Mol Biol Plants. 2021 Sep;27(9):1953-1968. doi: 10.1007/s12298-021-01061-8. Epub 2021 Sep 13.

Abstract

Increasing the vulnerability of plants especially crops to a wide range of cold stress reduces plant growth, development, yield production, and plant distribution. Cold stress induces physiological, morphological, biochemical, phenotypic, and molecular changes in plants. Transcription factor (TF) is one of the most important regulators that mediate gene expression. TF is activated by the signal transduction pathway, together with -acting element modulate the transcription of cold-responsive genes which contribute to increasing cold tolerance in plants. Here, AP2/ERF TF family is one of the most important cold stress-related TF families that along with other TF families, such as WRKY, bHLH, bZIP, MYB, NAC, and C2H2 interrelate to enhance cold stress tolerance. Over the past decade, significant progress has been found to solve the role of transcription factors (TFs) in improving cold tolerance in plants, such as omics analysis. Furthermore, numerous studies have identified and characterized the complexity of cold stress mechanisms among TFs or between TFs and other factors (endogenous and exogenous) including phytohormones, eugenol, and light. The role, function, and relationship among these TFs or between TFs and other factors to enhance cold tolerance still need to be clarified. Here, the current study analysed the role of AP2/ERF TF and the linkages among AP2/ERF with MYB, WRKY, bZIP, bHLH, C2H2, or NAC against cold stress tolerance.

摘要

增加植物尤其是作物对多种冷胁迫的脆弱性会降低植物的生长、发育、产量和分布范围。冷胁迫会诱导植物发生生理、形态、生化、表型和分子变化。转录因子(TF)是介导基因表达的最重要调节因子之一。转录因子通过信号转导途径被激活,与顺式作用元件一起调节冷响应基因的转录,这些基因有助于提高植物的耐寒性。在这里,AP2/ERF转录因子家族是与冷胁迫相关的最重要转录因子家族之一,它与其他转录因子家族,如WRKY、bHLH、bZIP、MYB、NAC和C2H2相互关联,以增强植物的冷胁迫耐受性。在过去十年中,在解析转录因子在提高植物耐寒性方面的作用取得了重大进展,如组学分析。此外,大量研究已经确定并描述了转录因子之间或转录因子与其他因素(内源性和外源性)(包括植物激素、丁香酚和光)之间冷胁迫机制的复杂性。这些转录因子之间或转录因子与其他因素之间增强耐寒性的作用、功能和关系仍有待阐明。在这里,当前的研究分析了AP2/ERF转录因子的作用以及AP2/ERF与MYB、WRKY、bZIP、bHLH、C2H2或NAC之间在抗冷胁迫耐受性方面的联系。

相似文献

1
AP2/ERF, an important cold stress-related transcription factor family in plants: A review.
Physiol Mol Biol Plants. 2021 Sep;27(9):1953-1968. doi: 10.1007/s12298-021-01061-8. Epub 2021 Sep 13.
5
Identification of AP2/ERF transcription factors in revealed the specific roles of ERF46 under cold stress.
Front Plant Sci. 2022 Aug 9;13:936602. doi: 10.3389/fpls.2022.936602. eCollection 2022.
6
Dynamic transcriptome analysis reveals AP2/ERF transcription factors responsible for cold stress in rapeseed (Brassica napus L.).
Mol Genet Genomics. 2016 Jun;291(3):1053-67. doi: 10.1007/s00438-015-1161-0. Epub 2016 Jan 4.
10
The transcription factors of tall fescue in response to temperature stress.
Plant Biol (Stuttg). 2021 May;23 Suppl 1:89-99. doi: 10.1111/plb.13201. Epub 2020 Dec 14.

引用本文的文献

1
LGRPv2: A high-value platform for the advancement of Fabaceae genomics.
Plant Biotechnol J. 2025 Sep;23(9):4057-4075. doi: 10.1111/pbi.70220. Epub 2025 Jun 22.
3
Identification and Analysis of Stress-Associated Protein (SAP) Transcription Factor Family Members in .
Plants (Basel). 2025 May 23;14(11):1592. doi: 10.3390/plants14111592.
10
PiERF1 regulates cold tolerance in Plumbago indica L. through ethylene signalling.
Sci Rep. 2025 Jan 11;15(1):1735. doi: 10.1038/s41598-025-86057-0.

本文引用的文献

2
Can omics deliver temperature resilient ready-to-grow crops?
Crit Rev Biotechnol. 2021 Dec;41(8):1209-1232. doi: 10.1080/07388551.2021.1898332. Epub 2021 Apr 7.
3
Jasmonic Acid Signaling and Molecular Crosstalk with Other Phytohormones.
Int J Mol Sci. 2021 Mar 13;22(6):2914. doi: 10.3390/ijms22062914.
4
Global Warming, Climate Change, and Environmental Pollution: Recipe for a Multifactorial Stress Combination Disaster.
Trends Plant Sci. 2021 Jun;26(6):588-599. doi: 10.1016/j.tplants.2021.02.011. Epub 2021 Mar 18.
5
Genome sequence and evolution of Betula platyphylla.
Hortic Res. 2021 Feb 11;8(1):37. doi: 10.1038/s41438-021-00481-7.
6
Overexpression of the V-ATPase c subunit gene from Antarctic notothenioid fishes enhances freezing tolerance in transgenic Arabidopsis plants.
Plant Physiol Biochem. 2021 Mar;160:365-376. doi: 10.1016/j.plaphy.2021.01.038. Epub 2021 Jan 28.
8
Apple TIME FOR COFFEE contributes to freezing tolerance by promoting unsaturation of fatty acids.
Plant Sci. 2021 Jan;302:110695. doi: 10.1016/j.plantsci.2020.110695. Epub 2020 Oct 17.
9
Harnessing Transcription Factors as Potential Tools to Enhance Grain Size Under Stressful Abiotic Conditions in Cereal Crops.
Front Plant Sci. 2020 Aug 18;11:1273. doi: 10.3389/fpls.2020.01273. eCollection 2020.
10
CBF-phyB-PIF Module Links Light and Low Temperature Signaling.
Trends Plant Sci. 2020 Oct;25(10):952-954. doi: 10.1016/j.tplants.2020.06.010. Epub 2020 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验