Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA.
Plant Physiol. 2022 Feb 4;188(2):831-845. doi: 10.1093/plphys/kiab405.
Capturing complete internal anatomies of plant organs and tissues within their relevant morphological context remains a key challenge in plant science. While plant growth and development are inherently multiscale, conventional light, fluorescence, and electron microscopy platforms are typically limited to imaging of plant microstructure from small flat samples that lack a direct spatial context to, and represent only a small portion of, the relevant plant macrostructures. We demonstrate technical advances with a lab-based X-ray microscope (XRM) that bridge the imaging gap by providing multiscale high-resolution three-dimensional (3D) volumes of intact plant samples from the cell to the whole plant level. Serial imaging of a single sample is shown to provide sub-micron 3D volumes co-registered with lower magnification scans for explicit contextual reference. High-quality 3D volume data from our enhanced methods facilitate sophisticated and effective computational segmentation. Advances in sample preparation make multimodal correlative imaging workflows possible, where a single resin-embedded plant sample is scanned via XRM to generate a 3D cell-level map, and then used to identify and zoom in on sub-cellular regions of interest for high-resolution scanning electron microscopy. In total, we present the methodologies for use of XRM in the multiscale and multimodal analysis of 3D plant features using numerous economically and scientifically important plant systems.
在植物科学中,捕捉植物器官和组织的完整内部解剖结构及其相关形态背景仍然是一个关键挑战。虽然植物的生长和发育是固有多尺度的,但传统的光、荧光和电子显微镜平台通常仅限于从小的平面样本中对植物微观结构进行成像,这些样本缺乏与相关植物宏观结构的直接空间关联,并且仅代表相关植物宏观结构的一小部分。我们通过基于实验室的 X 射线显微镜 (XRM) 展示了技术上的进步,该显微镜通过提供完整植物样本从细胞到整个植物水平的多尺度高分辨率三维 (3D) 体积,弥合了成像差距。对单个样本的连续成像被证明可以提供亚微米 3D 体积,与低倍扫描进行共配准,以明确上下文参考。我们改进方法的高质量 3D 体积数据有助于复杂有效的计算分割。样品制备方面的进步使得多模式相关成像工作流程成为可能,其中单个树脂嵌入的植物样本通过 XRM 进行扫描,以生成 3D 细胞级图谱,然后用于识别和放大感兴趣的亚细胞区域,以进行高分辨率扫描电子显微镜观察。总之,我们提出了使用 XRM 对 3D 植物特征进行多尺度和多模式分析的方法,这些方法使用了许多经济和科学上重要的植物系统。