Suppr超能文献

协同酶混合物在可生物降解聚合物/添加剂共混物中实现近乎完全的解聚。

Synergistic Enzyme Mixtures to Realize Near-Complete Depolymerization in Biodegradable Polymer/Additive Blends.

机构信息

Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA.

Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.

出版信息

Adv Mater. 2021 Dec;33(49):e2105707. doi: 10.1002/adma.202105707. Epub 2021 Oct 8.

Abstract

Embedding catalysts inside of plastics affords accelerated chemical modification with programmable latency and pathways. Nanoscopically embedded enzymes can lead to near-complete degradation of polyesters via chain-end mediated processive depolymerization. The overall degradation rate and pathways have a strong dependence on the morphology of semicrystalline polyesters. Yet, most studies to date focus on pristine polymers instead of mixtures that contain additives and other components despite their nearly universal use in plastic production. Here, additives are introduced to purposely change the morphology of polycaprolactone (PCL) by increasing the bending and twisting of crystalline lamellae. These morphological changes immobilize chain ends preferentially at the crystalline/amorphous interfaces and limit chain-end accessibility by the embedded processive enzyme. This chain-end redistribution reduces the polymer-to-monomer conversion from >95% to less than 50%, causing formation of highly crystalline plastic pieces, including microplastics. By synergizing both random chain scission and processive depolymerization, it is feasible to navigate morphological changes in polymer/additive blends and to achieve near-complete depolymerization. The random scission enzymes in the amorphous domains create new chain ends that are subsequently bound and depolymerized by processive enzymes. Present studies further highlight the importance to consider how the host polymer's morphologies affect the reactions catalyzed by embedded catalytic species.

摘要

将催化剂嵌入塑料中可以实现具有可编程潜伏期和途径的加速化学修饰。纳米嵌入的酶可以通过链端介导的连续解聚导致聚酯的近乎完全降解。整体降解速率和途径强烈依赖于半结晶聚酯的形态。然而,迄今为止,大多数研究都集中在原始聚合物上,而不是包含添加剂和其他成分的混合物上,尽管它们在塑料生产中几乎普遍使用。在这里,添加剂被引入到聚己内酯 (PCL) 中,通过增加晶体层的弯曲和扭曲来故意改变其形态。这些形态变化优先将链末端固定在晶态/非晶态界面处,并通过嵌入的连续酶限制链末端的可及性。这种链末端再分配将聚合物到单体的转化率从 >95%降低到小于 50%,导致形成高度结晶的塑料碎片,包括微塑料。通过协同随机链断裂和连续解聚,在聚合物/添加剂共混物中实现形态变化并实现近乎完全的解聚是可行的。无定形域中的随机断链酶会产生新的链末端,随后这些链末端会被连续酶结合并解聚。目前的研究进一步强调了考虑宿主聚合物形态如何影响嵌入催化物种催化的反应的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验