Kunsel T, Jansen T L C, Knoester J
University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
J Chem Phys. 2021 Oct 7;155(13):134305. doi: 10.1063/5.0065206.
Exciton diffusion plays an important role in many opto-electronic processes and phenomena. Understanding the interplay of intermolecular coupling, static energetic disorder, and dephasing caused by environmental fluctuations (dynamic disorder) is crucial to optimize exciton diffusion under various physical conditions. We report on a systematic analysis of the exciton diffusion constant in linear aggregates using the Haken-Strobl-Reineker model to describe this interplay. We numerically investigate the static-disorder scaling of (i) the diffusion constant in the limit of small dephasing rate, (ii) the dephasing rate at which the diffusion is optimized, and (iii) the value of the diffusion constant at the optimal dephasing rate. Three scaling regimes are found, associated with, respectively, fully delocalized exciton states (finite-size effects), weakly localized states, and strongly localized states. The scaling powers agree well with analytically estimated ones. In particular, in the weakly localized regime, the numerical results corroborate the so-called quantum Goldilocks principle to find the optimal dephasing rate and maximum diffusion constant as a function of static disorder, while in the strong-localization regime, these quantities can be derived fully analytically.
激子扩散在许多光电子过程和现象中起着重要作用。理解分子间耦合、静态能量无序以及环境波动(动态无序)引起的退相之间的相互作用,对于在各种物理条件下优化激子扩散至关重要。我们报告了使用哈肯 - 施特罗布尔 - 赖内克模型对线性聚集体中激子扩散常数进行的系统分析,以描述这种相互作用。我们通过数值研究了以下方面的静态无序标度:(i)在小退相速率极限下的扩散常数;(ii)扩散达到最优时的退相速率;(iii)最优退相速率下的扩散常数的值。发现了三种标度区域,分别与完全离域的激子态(有限尺寸效应)、弱局域态和强局域态相关。标度幂与解析估计值吻合良好。特别是,在弱局域区域,数值结果证实了所谓的量子金发姑娘原理,即找到作为静态无序函数的最优退相速率和最大扩散常数,而在强局域区域,这些量可以完全通过解析方法推导得出。