Suppr超能文献

新冠病毒感染病死率和病例病死率。

Infection fatality ratio and case fatality ratio of COVID-19.

机构信息

Hong Kong Polytechnic University, Hong Kong, China.

Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong, China.

出版信息

Int J Infect Dis. 2021 Dec;113:43-46. doi: 10.1016/j.ijid.2021.10.004. Epub 2021 Oct 7.

Abstract

The infection fatality ratio (IFR) is the risk of death per infection and is one of the most important epidemiological parameters. Enormous efforts have been undertaken to estimate the IFR for COVID-19. This study examined the pros and cons of several approaches. It is found that the frequently used approaches using serological survey results as the denominator and the number of confirmed deaths as the numerator underestimated the true IFR. The most typical examples are South Africa and Peru (before official correction), where the confirmed deaths are one-third of the excess deaths. We argue that the RT-PCR-based case fatality ratio (CFR) is a reliable indicator of the lethality of COVID-19 in locations where testing is extensive. An accurate IFR is crucial for policymaking and public-risk perception.

摘要

感染病死率(IFR)是每例感染的死亡风险,是最重要的流行病学参数之一。人们为了估计 COVID-19 的 IFR 付出了巨大的努力。本研究探讨了几种方法的优缺点。结果发现,常用的方法将血清学调查结果作为分母,将确诊死亡人数作为分子,从而低估了真实的 IFR。最典型的例子是南非和秘鲁(在官方修正之前),那里的确诊死亡人数是超额死亡人数的三分之一。我们认为,基于 RT-PCR 的病死率(CFR)是在检测广泛的地方 COVID-19 致死性的可靠指标。准确的 IFR 对于决策制定和公众风险感知至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1333/8496974/fd03640ddb10/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验