Suppr超能文献

基于血清流行率数据推断的 COVID-19 感染病死率。

Infection fatality rate of COVID-19 inferred from seroprevalence data.

机构信息

Meta-Research Innovation Center at Stanford (METRICS), Stanford University, 1265 Welch Road, Stanford, California 94305, United States of America.

出版信息

Bull World Health Organ. 2021 Jan 1;99(1):19-33F. doi: 10.2471/BLT.20.265892. Epub 2020 Oct 14.

Abstract

OBJECTIVE

To estimate the infection fatality rate of coronavirus disease 2019 (COVID-19) from seroprevalence data.

METHODS

I searched PubMed and preprint servers for COVID-19 seroprevalence studies with a sample size ≥ 500 as of 9 September 2020. I also retrieved additional results of national studies from preliminary press releases and reports. I assessed the studies for design features and seroprevalence estimates. I estimated the infection fatality rate for each study by dividing the cumulative number of COVID-19 deaths by the number of people estimated to be infected in each region. I corrected for the number of immunoglobin (Ig) types tested (IgG, IgM, IgA).

FINDINGS

I included 61 studies (74 estimates) and eight preliminary national estimates. Seroprevalence estimates ranged from 0.02% to 53.40%. Infection fatality rates ranged from 0.00% to 1.63%, corrected values from 0.00% to 1.54%. Across 51 locations, the median COVID-19 infection fatality rate was 0.27% (corrected 0.23%): the rate was 0.09% in locations with COVID-19 population mortality rates less than the global average (< 118 deaths/million), 0.20% in locations with 118-500 COVID-19 deaths/million people and 0.57% in locations with > 500 COVID-19 deaths/million people. In people younger than 70 years, infection fatality rates ranged from 0.00% to 0.31% with crude and corrected medians of 0.05%.

CONCLUSION

The infection fatality rate of COVID-19 can vary substantially across different locations and this may reflect differences in population age structure and case-mix of infected and deceased patients and other factors. The inferred infection fatality rates tended to be much lower than estimates made earlier in the pandemic.

摘要

目的

从血清流行率数据估算 2019 年冠状病毒病(COVID-19)的感染病死率。

方法

截至 2020 年 9 月 9 日,我在 PubMed 和预印本服务器上搜索了 COVID-19 血清流行率研究,这些研究的样本量≥500。我还从初步新闻稿和报告中检索了其他国家研究的结果。我评估了这些研究的设计特征和血清流行率估计值。我通过将每个地区估计的感染人数除以累积的 COVID-19 死亡人数来估算每个研究的感染病死率。我对测试的免疫球蛋白(Ig)类型(IgG、IgM、IgA)数量进行了校正。

发现

我纳入了 61 项研究(74 项估计值)和 8 项初步的国家估计值。血清流行率估计值范围为 0.02%至 53.40%。感染病死率范围为 0.00%至 1.63%,校正值范围为 0.00%至 1.54%。在 51 个地点中,COVID-19 感染病死率的中位数为 0.27%(校正后为 0.23%):在 COVID-19 人群死亡率低于全球平均水平(<118 人/百万人)的地点为 0.09%,在 118-500 人/百万人之间的地点为 0.20%,在死亡率大于 500 人/百万人的地点为 0.57%。在 70 岁以下人群中,感染病死率范围为 0.00%至 0.31%,粗率和校正中位数均为 0.05%。

结论

COVID-19 的感染病死率在不同地点可能有很大差异,这可能反映了不同地点的人口年龄结构和感染及死亡患者的病例组合以及其他因素的差异。推断的感染病死率往往远低于大流行早期的估计值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55be/7947934/35a43bbafedb/BLT.20.265892-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验