School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China.
School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China.
J Colloid Interface Sci. 2022 Feb 15;608(Pt 1):735-748. doi: 10.1016/j.jcis.2021.09.093. Epub 2021 Sep 20.
It is a major challenge to combine the advantages of two kinds of two-dimensional materials to construct a heterojunction and achieve efficient photocatalytic antifouling. In this work, we covalently connected two materials MXenes and covalent organic frameworks (COFs) through the Schiff base reaction and anchored Ag nanoparticles (NPs) to prepare a TiC/TpPa-1/Ag composite material with high efficiency bactericidal properties. The covalent bonding between MXene and COF greatly improved the stability of the material. TiC/TpPa-1/Ag composite showed an excellent antibacterial property against S. aureus and P. aeruginosa. The fluorescence spectra of TiC/TpPa-1/Ag proved that the electron transfer channels formed between the ternary materials could greatly improve the efficiency of carrier separation and prolong the life of photogenerated carriers. Density functional theory calculations showed that the synergistic catalytic effect of Ag and TiC could greatly reduce the work function along the interface, and the built-in electric field between the layers drive carrier fast migration, which effectively improve the catalytic performance.
将两种二维材料的优势结合起来构建异质结并实现高效光催化防污是一个重大挑战。在这项工作中,我们通过席夫碱反应将两种材料 MXenes 和共价有机骨架(COFs)共价连接,并将 Ag 纳米颗粒(NPs)锚定在 TiC/TpPa-1/Ag 复合材料上,制备出具有高效杀菌性能的复合材料。MXene 和 COF 之间的共价键合极大地提高了材料的稳定性。TiC/TpPa-1/Ag 复合材料对金黄色葡萄球菌和铜绿假单胞菌表现出优异的抗菌性能。TiC/TpPa-1/Ag 的荧光光谱证明,三元材料之间形成的电子转移通道可以极大地提高载流子分离效率并延长光生载流子的寿命。密度泛函理论计算表明,Ag 和 TiC 的协同催化作用可以极大地降低界面处的功函数,层间的内建电场驱动载流子快速迁移,从而有效地提高了催化性能。