Suppr超能文献

hub 神经元在调节皮层动力学中的作用。

The Role of Hub Neurons in Modulating Cortical Dynamics.

机构信息

The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.

Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel.

出版信息

Front Neural Circuits. 2021 Sep 24;15:718270. doi: 10.3389/fncir.2021.718270. eCollection 2021.

Abstract

Many neurodegenerative diseases are associated with the death of specific neuron types in particular brain regions. What makes the death of specific neuron types particularly harmful for the integrity and dynamics of the respective network is not well understood. To start addressing this question we used the most up-to-date biologically realistic dense neocortical microcircuit (NMC) of the rodent, which has reconstructed a volume of 0.3 mm and containing 31,000 neurons, ∼37 million synapses, and 55 morphological cell types arranged in six cortical layers. Using modern network science tools, we identified hub neurons in the NMC, that are connected synaptically to a large number of their neighbors and systematically examined the impact of abolishing these cells. In general, the structural integrity of the network is robust to cells' attack; yet, attacking hub neurons strongly impacted the small-world topology of the network, whereas similar attacks on random neurons have a negligible effect. Such hub-specific attacks are also impactful on the network dynamics, both when the network is at its spontaneous synchronous state and when it was presented with synchronized thalamo-cortical visual-like input. We found that attacking layer 5 hub neurons is most harmful to the structural and functional integrity of the NMC. The significance of our results for understanding the role of specific neuron types and cortical layers for disease manifestation is discussed.

摘要

许多神经退行性疾病都与特定脑区特定神经元类型的死亡有关。对于特定神经元类型的死亡为何会特别损害相应网络的完整性和动态性,人们还不太了解。为了开始解决这个问题,我们使用了最先进的、具有生物学真实性的啮齿动物密集新皮层微电路(NMC),该电路重建了 0.3 毫米的体积,包含 31000 个神经元、约 3700 万个突触和 55 种形态学细胞类型,这些细胞类型排列在 6 个皮层层中。我们使用现代网络科学工具,在 NMC 中识别出了枢纽神经元,这些神经元通过突触与大量相邻神经元相连,并系统地检查了消除这些细胞的影响。一般来说,网络的结构完整性对细胞的攻击具有很强的鲁棒性;然而,攻击枢纽神经元会强烈影响网络的小世界拓扑结构,而对随机神经元的类似攻击则几乎没有影响。在网络处于自发同步状态和呈现同步丘脑-皮层视觉样输入时,这种针对枢纽神经元的攻击对网络动力学也有很大影响。我们发现,攻击 5 层枢纽神经元对 NMC 的结构和功能完整性的损害最大。我们的研究结果对于理解特定神经元类型和皮层层在疾病表现中的作用具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6879/8500625/d2ff79390cdb/fncir-15-718270-g001.jpg

相似文献

1
The Role of Hub Neurons in Modulating Cortical Dynamics.
Front Neural Circuits. 2021 Sep 24;15:718270. doi: 10.3389/fncir.2021.718270. eCollection 2021.
2
Cortical Dynamics in Presence of Assemblies of Densely Connected Weight-Hub Neurons.
Front Comput Neurosci. 2017 Jun 22;11:52. doi: 10.3389/fncom.2017.00052. eCollection 2017.
3
Rich cell-type-specific network topology in neocortical microcircuitry.
Nat Neurosci. 2017 Jul;20(7):1004-1013. doi: 10.1038/nn.4576. Epub 2017 Jun 5.
4
Variability v.s. synchronicity of neuronal activity in local cortical network models with different wiring topologies.
J Comput Neurosci. 2007 Oct;23(2):237-50. doi: 10.1007/s10827-007-0030-1. Epub 2007 Apr 6.
5
Small modifications to network topology can induce stochastic bistable spiking dynamics in a balanced cortical model.
PLoS One. 2014 Apr 17;9(4):e88254. doi: 10.1371/journal.pone.0088254. eCollection 2014.
6
Data-Driven Modeling of Cholinergic Modulation of Neural Microcircuits: Bridging Neurons, Synapses and Network Activity.
Front Neural Circuits. 2018 Oct 9;12:77. doi: 10.3389/fncir.2018.00077. eCollection 2018.
8
Long-period rhythmic synchronous firing in a scale-free network.
Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):E4931-6. doi: 10.1073/pnas.1304680110. Epub 2013 Nov 25.
9
Synaptic Failure Differentially Affects Pattern Formation in Heterogenous Networks.
Front Neural Circuits. 2019 May 8;13:31. doi: 10.3389/fncir.2019.00031. eCollection 2019.

引用本文的文献

2
Of mice and men: Dendritic architecture differentiates human from mouse neuronal networks.
iScience. 2025 Jun 18;28(7):112928. doi: 10.1016/j.isci.2025.112928. eCollection 2025 Jul 18.
3
Of mice and men: Dendritic architecture differentiates human from mice neuronal networks.
bioRxiv. 2024 Dec 18:2023.09.11.557170. doi: 10.1101/2023.09.11.557170.
5
Electrophysiological features of cortical 3D networks are deeply modulated by scaffold properties.
APL Bioeng. 2024 Aug 22;8(3):036112. doi: 10.1063/5.0214745. eCollection 2024 Sep.
6
Connecting the dots in the zona incerta: A study of neural assemblies and motifs of inter-area coordination in mice.
iScience. 2023 Dec 16;27(1):108761. doi: 10.1016/j.isci.2023.108761. eCollection 2024 Jan 19.
7
Morphological Features of Human Dendritic Spines.
Adv Neurobiol. 2023;34:367-496. doi: 10.1007/978-3-031-36159-3_9.
8
Generalization of generative model for neuronal ensemble inference method.
PLoS One. 2023 Jun 27;18(6):e0287708. doi: 10.1371/journal.pone.0287708. eCollection 2023.
9
From single-neuron dynamics to higher-order circuit motifs in control and pathological brain networks.
J Physiol. 2023 Aug;601(15):3011-3024. doi: 10.1113/JP282749. Epub 2022 Jul 22.
10
Gestational immune activation disrupts hypothalamic neurocircuits of maternal care behavior.
Mol Psychiatry. 2024 Apr;29(4):859-873. doi: 10.1038/s41380-022-01602-x. Epub 2022 May 17.

本文引用的文献

1
An analytical method for the identification of cell type-specific disease gene modules.
J Transl Med. 2021 Jan 6;19(1):20. doi: 10.1186/s12967-020-02690-5.
2
Targeted Activation of Hippocampal Place Cells Drives Memory-Guided Spatial Behavior.
Cell. 2020 Dec 10;183(6):1586-1599.e10. doi: 10.1016/j.cell.2020.09.061. Epub 2020 Nov 6.
3
The Mind of a Mouse.
Cell. 2020 Sep 17;182(6):1372-1376. doi: 10.1016/j.cell.2020.08.010.
4
Array programming with NumPy.
Nature. 2020 Sep;585(7825):357-362. doi: 10.1038/s41586-020-2649-2. Epub 2020 Sep 16.
5
A community-based transcriptomics classification and nomenclature of neocortical cell types.
Nat Neurosci. 2020 Dec;23(12):1456-1468. doi: 10.1038/s41593-020-0685-8.
6
Impact of higher order network structure on emergent cortical activity.
Netw Neurosci. 2020 Mar 1;4(1):292-314. doi: 10.1162/netn_a_00124. eCollection 2020.
7
A large-scale standardized physiological survey reveals functional organization of the mouse visual cortex.
Nat Neurosci. 2020 Jan;23(1):138-151. doi: 10.1038/s41593-019-0550-9. Epub 2019 Dec 16.
8
CoreNEURON : An Optimized Compute Engine for the NEURON Simulator.
Front Neuroinform. 2019 Sep 19;13:63. doi: 10.3389/fninf.2019.00063. eCollection 2019.
9
Cortical reliability amid noise and chaos.
Nat Commun. 2019 Aug 22;10(1):3792. doi: 10.1038/s41467-019-11633-8.
10
Neuronal vulnerability and multilineage diversity in multiple sclerosis.
Nature. 2019 Sep;573(7772):75-82. doi: 10.1038/s41586-019-1404-z. Epub 2019 Jul 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验