Suppr超能文献

基于生物信息学方法鉴定牙髓病相关的潜在生物标志物。

Identification of Pulpitis-Related Potential Biomarkers Using Bioinformatics Approach.

机构信息

Department of Cariology and Endodontology, Qingdao Stomatological Hospital Affiliated to Qingdao University, 266001 Qingdao, Shandong Province, China.

Department of Cariology and Endodontology 2nd, Stomatological Hospital of Xiamen Medical College, 361008 Xiamen, Fujian Province, China.

出版信息

Comput Math Methods Med. 2021 Sep 29;2021:1808361. doi: 10.1155/2021/1808361. eCollection 2021.

Abstract

Inflammatory reaction of pulp tissue plays a role in the pathogen elimination and tissue repair. The evaluation of severity of pulpitis can serve an instructive function in therapeutic scheme. However, there are many limitations in the traditional evaluation methods for the severity of pulpitis. Based on the Gene Expression Omnibus (GEO) database, our study discovered 843 differentially expressed genes (DEGs) related to pulpitis. Afterwards, we constructed a protein-protein interaction (PPI) network of DEGs and used MCODE plugin to determine the key functional subset. Meanwhile, genes in the key functional subset were subjected to GO and KEGG enrichment analyses. The result showed that genes were mainly enriched in inflammatory reaction-related functions. Next, we screened out intersections of PPI network nodes and pulpitis-related genes. Then, 20 genes were obtained as seed genes. In the PPI network, 50 genes that had the highest correlation with seed genes were screened out using random walk with restart (RWR). Furthermore, 4 pulpitis-related hub genes were obtained from the intersection of the top 50 genes and genes in the key functional subset. Finally, GeneMANIA was utilized to predict genes coexpressed with hub genes, and expression levels of the 4 hub genes in normal and pulpitis groups were analyzed based on GEO data. The result demonstrated that the 4 hub genes were mainly coexpressed with chemokine-related genes and were remarkably upregulated in the pulpitis group. In short, we eventually determined 4 potential biomarkers of pulpitis.

摘要

牙髓组织的炎症反应在病原体清除和组织修复中发挥作用。牙髓炎严重程度的评估可以为治疗方案提供指导作用。然而,传统的牙髓炎严重程度评估方法存在许多局限性。本研究基于基因表达综合数据库(GEO),发现了 843 个与牙髓炎相关的差异表达基因(DEGs)。随后,我们构建了 DEGs 的蛋白质-蛋白质相互作用(PPI)网络,并使用 MCODE 插件确定关键功能子集中的基因。同时,对关键功能子集的基因进行 GO 和 KEGG 富集分析。结果表明,基因主要富集在与炎症反应相关的功能中。接下来,我们筛选出 PPI 网络节点与牙髓炎相关基因的交集,然后获得 20 个作为种子基因。在 PPI 网络中,使用随机游走重启动(RWR)筛选出与种子基因相关性最高的 50 个基因。此外,从 top50 基因和关键功能子集中的基因交集筛选出 4 个牙髓炎相关的枢纽基因。最后,利用 GeneMANIA 预测与枢纽基因共表达的基因,并基于 GEO 数据分析 4 个枢纽基因在正常和牙髓炎组中的表达水平。结果表明,这 4 个枢纽基因主要与趋化因子相关基因共表达,并且在牙髓炎组中显著上调。总之,我们最终确定了 4 个牙髓炎的潜在生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c76/8495466/0bbc47f723bc/CMMM2021-1808361.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验