Suppr超能文献

循环细胞外囊泡基于长链RNA的亚型分类和反卷积分析能够预测胰腺导管腺癌的免疫原性特征和临床结局。

Circulating EVs long RNA-based subtyping and deconvolution enable prediction of immunogenic signatures and clinical outcome for PDAC.

作者信息

Li Yuchen, Li Ye, Yu Shulin, Qian Ling, Chen Kun, Lai Hongyan, Zhang Hena, Li Yan, Zhang Yalei, Gu Sijia, Meng Zhiqiang, Huang Shenglin, Wang Peng

机构信息

Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, 270 Dong An Road, Shanghai 200032, China.

Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai 200032, China.

出版信息

Mol Ther Nucleic Acids. 2021 Sep 24;26:488-501. doi: 10.1016/j.omtn.2021.08.017. eCollection 2021 Dec 3.

Abstract

Identification of clinically applicable molecular subtypes of pancreatic ductal adenocarcinoma (PDAC) is crucial to improving patient outcomes. However, the traditional tissue-dependent transcriptional subtyping strategies are invasive and not amenable to routine clinical evaluation. In this study, we developed a circulating extracellular vesicle (cEV) long RNA (exLR)-based PDAC subtyping method and provided exLR-derived signatures for predicting immunogenic features and clinical outcomes in PDAC. We enrolled 426 individuals, among which 227 PDACs served as an internal cohort, 118 PDACs from two other medical centers served as an independent validation cohort, and 81 healthy individuals served as the control. ExLR sequencing was performed on all plasma samples. We found that PDAC could be categorized into three subtypes based on plasma exLR profiles. Each subpopulation showed its own molecular features and was associated with patient clinical prognosis. The immunocyte-derived cEV fractions were altered among PDAC subtypes and interconnected with tumor-infiltrating lymphocytes in cancerous tissue. Additionally, we found a significant concordance of immunoregulators between tissue and blood EVs, and we harvested potential PDAC therapeutic targets. Most importantly, we constructed a nine exLR-derived, tissue-applicable signature for prognostic assessment of PDAC. The circulating exLR-based features may offer an attractive platform for personalized treatment and predicting patient outcomes in multiple types of cancer.

摘要

鉴定胰腺导管腺癌(PDAC)的临床适用分子亚型对于改善患者预后至关重要。然而,传统的基于组织的转录亚型分类策略具有侵入性,不适用于常规临床评估。在本研究中,我们开发了一种基于循环细胞外囊泡(cEV)长链RNA(exLR)的PDAC亚型分类方法,并提供了exLR衍生的特征用于预测PDAC的免疫原性特征和临床结果。我们招募了426名个体,其中227例PDAC作为内部队列,来自其他两个医疗中心的118例PDAC作为独立验证队列,81名健康个体作为对照。对所有血浆样本进行exLR测序。我们发现,基于血浆exLR谱,PDAC可分为三种亚型。每个亚群都有其自身的分子特征,并与患者临床预后相关。免疫细胞衍生的cEV组分在PDAC亚型之间发生改变,并与癌组织中的肿瘤浸润淋巴细胞相互关联。此外,我们发现组织和血液中的细胞外囊泡之间免疫调节因子存在显著一致性,并获得了潜在的PDAC治疗靶点。最重要的是,我们构建了一个基于九个exLR衍生的、适用于组织的特征用于PDAC的预后评估。基于循环exLR的特征可能为多种癌症的个性化治疗和预测患者预后提供一个有吸引力的平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/771c/8479278/dd48e9dae3fa/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验