Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States.
Medical Physics Graduate Program, Duke University, Durham, NC, United States.
Front Immunol. 2024 Oct 28;15:1451261. doi: 10.3389/fimmu.2024.1451261. eCollection 2024.
Immune dysregulation plays a major role in cancer progression. The quantification of lymphocytic spatial inflammation may enable spatial system biology, improve understanding of therapeutic resistance, and contribute to prognostic imaging biomarkers.
In this paper, we propose a knowledge-guided deep learning framework to measure the lymphocytic spatial architecture on human H&E tissue, where the fidelity of training labels is maximized through single-cell resolution image registration of H&E to IHC. We demonstrate that such an approach enables pixel-perfect ground-truth labeling of lymphocytes on H&E as measured by IHC. We then experimentally validate our technique in a genetically engineered, immune-compromised mouse model, where knockout mice lacking mature lymphocytes are used as a negative experimental control. Such experimental validation moves beyond the classical statistical testing of deep learning models and demonstrates feasibility of more rigorous validation strategies that integrate computational science and basic science.
Using our developed approach, we automatically annotated more than 111,000 human nuclei (45,611 CD3/CD20 positive lymphocytes) on H&E images to develop our model, which achieved an AUC of 0.78 and 0.71 on internal hold-out testing data and external testing on an independent dataset, respectively. As a measure of the global spatial architecture of the lymphocytic microenvironment, the average structural similarity between predicted lymphocytic density maps and ground truth lymphocytic density maps was 0.86 ± 0.06 on testing data. On experimental mouse model validation, we measured a lymphocytic density of 96.5 ± %1% in a control mouse, compared to an average of 16.2 ± %5% in immune knockout mice (p<0.0001, ANOVA-test).
These results demonstrate that CD3/CD20 positive lymphocytes can be accurately detected and characterized on H&E by deep learning and generalized across species. Collectively, these data suggest that our understanding of complex biological systems may benefit from computationally-derived spatial analysis, as well as integration of computational science and basic science.
免疫失调在癌症进展中起着重要作用。淋巴细胞空间炎症的量化可以实现空间系统生物学,增进对治疗抵抗的理解,并有助于预后成像生物标志物的发展。
在本文中,我们提出了一种基于知识的深度学习框架来测量人类 H&E 组织中的淋巴细胞空间结构,通过 H&E 到 IHC 的单细胞分辨率图像配准,最大限度地提高训练标签的保真度。我们证明了这种方法可以实现 IHC 测量的 H&E 上淋巴细胞的像素级精确的ground-truth 标记。然后,我们在基因工程免疫缺陷小鼠模型中对我们的技术进行了实验验证,其中缺乏成熟淋巴细胞的敲除小鼠被用作阴性实验对照。这种实验验证超越了对深度学习模型的经典统计测试,并证明了更严格的验证策略的可行性,该策略整合了计算科学和基础科学。
使用我们开发的方法,我们自动注释了超过 111,000 个人核(45,611 个 CD3/CD20 阳性淋巴细胞)的 H&E 图像以开发我们的模型,该模型在内部保留测试数据和外部测试独立数据集上的 AUC 分别为 0.78 和 0.71。作为淋巴细胞微环境全局空间结构的度量,预测的淋巴细胞密度图和ground-truth 淋巴细胞密度图之间的平均结构相似性在测试数据上为 0.86±0.06。在实验小鼠模型验证中,我们在对照小鼠中测量到淋巴细胞密度为 96.5±%1%,而在免疫敲除小鼠中平均为 16.2±%5%(p<0.0001,ANOVA 检验)。
这些结果表明,CD3/CD20 阳性淋巴细胞可以通过深度学习准确地在 H&E 上检测和表征,并在物种间推广。总的来说,这些数据表明,我们对复杂生物系统的理解可能受益于计算衍生的空间分析,以及计算科学和基础科学的整合。