Serra-Aguila Albert, Puigoriol-Forcada Josep Maria, Reyes Guillermo, Menacho Joaquin
Passive Safety Department, Applus + IDIADA HQ, Santa Oliva, L'Albornar, P.O. Box 20, 43710 Tarragona, Spain.
IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain.
Polymers (Basel). 2022 Mar 17;14(6):1210. doi: 10.3390/polym14061210.
The mechanical properties of thermoplastic materials depend on temperature and strain rate. This study examined the development of a procedure to predict tensile moduli at different strain rates and temperatures, using experimental data from three-point-bending dynamic mechanical analysis (DMA). The method integrated different classical concepts of rheology to establish a closed formulation that will allow researchers save an important amount of time. Furthermore, it implied a significant decrease in the number of tests when compared to the commonly used procedure with a universal testing machine (UTM). The method was validated by means of a prediction of tensile moduli of polyamide PA66 in the linear elastic range, over a temperature range that included the glass-transition temperature. The method was applicable to thermo-rheologically simple materials under the hypotheses of isotropy, homogeneity, small deformations, and linear viscoelasticity. This method could be applicable to other thermoplastic materials, although it must be tested using these other materials to determine to what extent it can be applied reliably.
热塑性材料的机械性能取决于温度和应变速率。本研究利用三点弯曲动态力学分析(DMA)的实验数据,探讨了一种预测不同应变速率和温度下拉伸模量的方法。该方法整合了不同的经典流变学概念,建立了一个封闭的公式,可为研究人员节省大量时间。此外,与使用万能试验机(UTM)的常用方法相比,该方法显著减少了测试次数。通过预测聚酰胺PA66在包括玻璃化转变温度在内的温度范围内线性弹性区域的拉伸模量,对该方法进行了验证。该方法适用于各向同性、均匀性、小变形和线性粘弹性假设下的热流变学简单材料。尽管必须使用其他热塑性材料进行测试,以确定该方法可靠适用的程度,但该方法可能适用于其他热塑性材料。