Suppr超能文献

基于系统机器学习建模的新型甜味评估多层预测方法。

A novel multi-layer prediction approach for sweetness evaluation based on systematic machine learning modeling.

机构信息

National Engineering Laboratory for Deep Processing of Rice and Byproducts, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China.

Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China.

出版信息

Food Chem. 2022 Mar 15;372:131249. doi: 10.1016/j.foodchem.2021.131249. Epub 2021 Sep 28.

Abstract

Nowadays, computational approaches have drawn more and more attention when exploring the relationship between sweetness and chemical structure instead of traditional experimental tests. In this work, we proposed a novel multi-layer sweetness evaluation system based on machine learning methods. It can be used to evaluate sweet properties of compounds with different chemical spaces and categories, including natural, artificial, carbohydrate, non-carbohydrate, nutritive and non-nutritive ones, suitable for different application scenarios. Furthermore, it provided quantitative predictions of sweetness. In addition, sweetness-related chemical basis and structure transforming rules were obtained by using molecular cloud and matched molecular pair analysis (MMPA) methods. This work systematically improved the data quality, explored the best machine learning algorithm and molecular characterizing strategy, and finally obtained robust models to establish a multi-layer prediction system (available at: https://github.com/ifyoungnet/ChemSweet). We hope that this study could facilitate food scientists with efficient screening and precise development of high-quality sweeteners.

摘要

如今,在探索甜味与化学结构之间的关系时,计算方法引起了越来越多的关注,而不是传统的实验测试。在这项工作中,我们提出了一种基于机器学习方法的新型多层甜味评价系统。它可用于评估具有不同化学空间和类别的化合物的甜味特性,包括天然、人工、碳水化合物、非碳水化合物、营养和非营养物质,适用于不同的应用场景。此外,它还提供了甜味的定量预测。此外,还通过分子云分析和匹配分子对分析(MMPA)方法获得了与甜味相关的化学基础和结构转化规则。这项工作系统地提高了数据质量,探索了最佳的机器学习算法和分子特征化策略,最终获得了稳健的模型,建立了一个多层预测系统(可在:https://github.com/ifyoungnet/ChemSweet)。我们希望这项研究能为食品科学家提供高效的筛选和精确开发高质量甜味剂的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验