Suppr超能文献

多元线性回归分析和支持向量机预测甜味。

Prediction of sweetness by multilinear regression analysis and support vector machine.

机构信息

State Key Laboratory of Chemical Resource Engineering, Dept. of Pharmaceutical Engineering, Beijing Univ. of Chemica Technology, Beijing, China.

出版信息

J Food Sci. 2013 Sep;78(9):S1445-50. doi: 10.1111/1750-3841.12199. Epub 2013 Aug 5.

Abstract

The sweetness of a compound is of large interest for the food additive industry. In this work, 2 quantitative models were built to predict the logSw (the logarithm of sweetness) of 320 unique compounds with a molecular weight from 132 to 1287 and a sweetness from 22 to 22500000. The whole dataset was randomly split into a training set including 214 compounds and a test set including 106 compounds, represented by 12 selected molecular descriptors. Then, logSw was predicted using a multilinear regression (MLR) analysis and a support vector machine (SVM). For the test set, the correlation coefficients of 0.87 and 0.88 were obtained by MLR and SVM, respectively. The descriptors found in our quantitative structure-activity relationship models are prone to a structural interpretation and support the AH/B System model proposed by Shallenberger and Acree.

摘要

甜味化合物对于食品添加剂工业具有重要意义。在这项工作中,我们建立了两个定量模型,用于预测具有分子量为 132 至 1287 和甜度为 22 至 22500000 的 320 种独特化合物的 logSw(甜度对数)。整个数据集被随机分为训练集和测试集,其中训练集包括 214 种化合物,测试集包括 106 种化合物,分别由 12 种选定的分子描述符表示。然后,使用多元线性回归(MLR)分析和支持向量机(SVM)来预测 logSw。对于测试集,MLR 和 SVM 分别获得了 0.87 和 0.88 的相关系数。在我们的定量构效关系模型中发现的描述符易于进行结构解释,并支持 Shallenberger 和 Acree 提出的 AH/B 系统模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验