Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria.
Austrian Centre of Industrial Biotechnology (ACIB), 8010, Graz, Austria.
BMC Biotechnol. 2021 Oct 11;21(1):58. doi: 10.1186/s12896-021-00715-5.
Published biocatalytic routes for accessing enantiopure 2-phenylpropanol using oxidoreductases afforded maximal product titers of only 80 mM. Enzyme deactivation was identified as the major limitation and was attributed to adduct formation of the aldehyde substrate with amino acid residues of the reductase.
A single point mutant of Candida tenuis xylose reductase (CtXR D51A) with very high catalytic efficiency (43·10 s M) for (S)-2-phenylpropanal was found. The enzyme showed high enantioselectivity for the (S)-enantiomer but was deactivated by 0.5 mM substrate within 2 h. A whole-cell biocatalyst expressing the engineered reductase and a yeast formate dehydrogenase for NADH-recycling provided substantial stabilization of the reductase. The relatively slow in situ racemization of 2-phenylpropanal and the still limited biocatalyst stability required a subtle adjustment of the substrate-to-catalyst ratio. A value of 3.4 g/g was selected as a suitable compromise between product ee and the conversion ratio. A catalyst loading of 40 g was used to convert 1 M racemic 2-phenylpropanal into 843 mM (115 g/L) (S)-phenylpropanol with 93.1% ee.
The current industrial production of profenols mainly relies on hydrolases. The bioreduction route established here represents an alternative method for the production of profenols that is competitive with hydrolase-catalyzed kinetic resolutions.
已发表的使用氧化还原酶获得手性纯 2-苯基-1-丙醇的生物催化途径仅能达到 80 mM 的最大产物浓度。酶失活被认为是主要限制因素,归因于醛底物与还原酶的氨基酸残基形成加合物。
发现了一种对(S)-2-苯丙醛具有非常高催化效率(43·10 s M)的产朊假丝酵母木糖还原酶(CtXR D51A)单点突变体。该酶对(S)-对映体具有高对映选择性,但在 2 小时内被 0.5 mM 底物失活。表达工程化还原酶和酵母甲酸脱氢酶用于 NADH 循环的全细胞生物催化剂提供了还原酶的高度稳定。2-苯丙醛的相对缓慢的原位外消旋化和仍然有限的生物催化剂稳定性需要对底物-催化剂比进行微妙调整。选择 3.4 g/g 作为产物 ee 和转化率之间的合适折衷值。使用 40 g 催化剂负载量将 1 M 外消旋 2-苯丙醛转化为 843 mM(115 g/L)(S)-苯丙醇,ee 值为 93.1%。
目前手性醇的工业生产主要依赖于水解酶。此处建立的生物还原途径代表了一种与水解酶催化动力学拆分竞争的手性醇生产的替代方法。