Institute of Biotechnology and Biochemical Engineering, Graz University of Technology (TUG), Petersgasse 12/1, A-8010 Graz, Austria.
Microb Cell Fact. 2008 Dec 10;7:37. doi: 10.1186/1475-2859-7-37.
Whole cell-catalyzed biotransformation is a clear process option for the production of chiral alcohols via enantioselective reduction of precursor ketones. A wide variety of synthetically useful reductases are expressed heterologously in Escherichia coli to a high level of activity. Therefore, this microbe has become a prime system for carrying out whole-cell bioreductions at different scales. The limited capacity of central metabolic pathways in E. coli usually requires that reductase coenzyme in the form of NADPH or NADH be regenerated through a suitable oxidation reaction catalyzed by a second NADP+ or NAD+ dependent dehydrogenase that is co-expressed. Candida tenuis xylose reductase (CtXR) was previously shown to promote NADH dependent reduction of aromatic alpha-keto esters with high Prelog-type stereoselectivity. We describe here the development of a new whole-cell biocatalyst that is based on an E. coli strain co-expressing CtXR and formate dehydrogenase from Candida boidinii (CbFDH). The bacterial system was evaluated for the synthesis of ethyl R-4-cyanomandelate under different process conditions and benchmarked against a previously described catalyst derived from Saccharomyces cerevisiae expressing CtXR.
Gene co-expression from a pETDuet-1 vector yielded about 260 and 90 units of intracellular CtXR and CbFDH activity per gram of dry E. coli cell mass (gCDW). The maximum conversion rate (rS) for ethyl 4-cyanobenzoylformate by intact or polymyxin B sulphate-permeabilized cells was similar (2 mmol/gCDWh), suggesting that the activity of CbFDH was partly rate-limiting overall. Uncatalyzed ester hydrolysis in substrate as well as inactivation of CtXR and CbFDH in the presence of the alpha-keto ester constituted major restrictions to the yield of alcohol product. Using optimized reaction conditions (100 mM substrate; 40 gCDW/L), we obtained ethyl R-4-cyanomandelate with an enantiomeric excess (e.e.) of 97.2% in a yield of 82%. By increasing the substrate concentration to 500 mM, the e.e. could be enhanced to congruent with100%, however, at the cost of a 3-fold decreased yield. A recombinant strain of S. cerevisiae converted 100 mM substrate to 45 mM ethyl R-4-cyanomandelate with an e.e. of >/= 99.9%. Modifications to the recombinant E. coli (cell permeabilisation; addition of exogenous NAD+) and addition of a water immiscible solvent (e.g. hexane or 1-butyl-3-methylimidazolium hexafluorophosphate) were not useful. To enhance the overall capacity for NADH regeneration in the system, we supplemented the original biocatalyst after permeabilisation with also permeabilised E. coli cells that expressed solely CbFDH (410 U/gCDW). The positive effect on yield (18% --> 62%; 100 mM substrate) caused by a change in the ratio of FDH to XR activity from 2 to 20 was invalidated by a corresponding loss in product enantiomeric purity from 86% to only 71%.
A whole-cell system based on E. coli co-expressing CtXR and CbFDH is a powerful and surprisingly robust biocatalyst for the synthesis of ethyl R-4-cyanomandelate in high optical purity and yield. A clear requirement for further optimization of the specific productivity of the biocatalyst is to remove the kinetic bottleneck of NADH regeneration through enhancement (>/= 10-fold) of the intracellular level of FDH activity.
通过对前手酮的对映选择性还原,全细胞催化生物转化是生产手性醇的明确过程选择。许多合成有用的还原酶在大肠杆菌中以高活性异源表达。因此,这种微生物已成为在不同规模下进行全细胞生物还原的主要系统。大肠杆菌中中心代谢途径的有限能力通常需要通过合适的氧化反应使还原酶辅酶以 NADPH 或 NADH 的形式再生,该氧化反应由共表达的第二种 NADP+或 NAD+依赖性脱氢酶催化。先前已经表明,薄红红酵母木糖还原酶(CtXR)可促进 NADH 依赖的芳香族α-酮酯的还原,具有高 Prelog 型立体选择性。我们在此描述了一种新的全细胞生物催化剂的开发,该催化剂基于共表达 CtXR 和 Candida boidinii(CbFDH)的形式脱氢酶的大肠杆菌菌株。根据不同的过程条件评估了细菌系统用于合成 R-4-氰基扁桃酸乙酯,并与先前描述的来自酿酒酵母表达 CtXR 的催化剂进行了基准测试。
来自 pETDuet-1 载体的基因共表达每克干燥大肠杆菌细胞质量(gCDW)产生约 260 和 90 个单位的细胞内 CtXR 和 CbFDH 活性。完整或多粘菌素 B 硫酸盐渗透细胞的乙基 4-氰基苯甲酰甲酸酯的最大转化率(rS)相似(2mmol/gCDWh),这表明 CbFDH 的活性在总体上受到部分限制。底物中酯的非催化水解以及α-酮酯存在下 CtXR 和 CbFDH 的失活是产物醇收率的主要限制因素。使用优化的反应条件(100mM 底物;40gCDW/L),我们以 82%的收率获得了对映体过量(ee)为 97.2%的 R-4-氰基扁桃酸乙酯。通过将底物浓度提高到 500mM,可以将 ee 提高到 100%,但收率降低了 3 倍。酿酒酵母的重组菌株以 >/=99.9%的 ee 将 100mM 底物转化为 45mM R-4-氰基扁桃酸乙酯。大肠杆菌(细胞渗透;添加外源 NAD+)和添加不混溶溶剂(例如己烷或 1-丁基-3-甲基咪唑六氟磷酸盐)的重组的修改没有用处。为了提高系统中 NADH 再生的整体能力,在用多粘菌素 B 硫酸盐渗透后,我们用仅表达 CbFDH(410U/gCDW)的渗透大肠杆菌细胞补充了原始生物催化剂。当 FDH 与 XR 活性的比例从 2 增加到 20 时,对产率(18%-->62%;100mM 底物)的积极影响被产物对映体纯度从 86%降低到仅 71%所抵消。
基于共表达 CtXR 和 CbFDH 的大肠杆菌全细胞系统是一种强大且令人惊讶的稳健的生物催化剂,可用于以高光学纯度和产率合成 R-4-氰基扁桃酸乙酯。进一步优化生物催化剂的比生产力的明确要求是通过增强(>=10 倍)细胞内 FDH 活性来消除 NADH 再生的动力学瓶颈。