Radiomics Group, Vall d'Hebron Institute of Oncology (VHIO), 08035, Barcelona, Spain.
Radiology Department, Vall d'Hebron University Hospital, 08035, Barcelona, Spain.
Sci Rep. 2021 Oct 11;11(1):20133. doi: 10.1038/s41598-021-99701-2.
Tumor heterogeneity has been postulated as a hallmark of treatment resistance and a cure constraint in cancer patients. Conventional quantitative medical imaging (radiomics) can be extended to computing voxel-wise features and aggregating tumor subregions with similar radiological phenotypes (imaging habitats) to elucidate the distribution of tumor heterogeneity within and among tumors. Despite the promising applications of imaging habitats, they may be affected by variability of radiomics features, preventing comparison and generalization of imaging habitats techniques. We performed a comprehensive repeatability and reproducibility analysis of voxel-wise radiomics features in more than 500 lung cancer patients with computed tomography (CT) images and demonstrated the effect of voxel-wise radiomics variability on imaging habitats computation in 30 lung cancer patients with test-retest images. Repeatable voxel-wise features characterized texture heterogeneity and were reproducible regardless of the applied feature extraction parameters. Imaging habitats computed using robust radiomics features were more stable than those computed using all features in test-retest CTs from the same patient. Nine voxel-wise radiomics features (joint energy, joint entropy, sum entropy, maximum probability, difference entropy, Imc1, Imc2, Idn and Idmn) were repeatable and reproducible. This supports their application for computing imaging habitats in lung tumors towards the discovery of previously unseen tumor heterogeneity and the development of novel non-invasive imaging biomarkers for precision medicine.
肿瘤异质性被认为是癌症患者治疗耐药和治愈受限的标志之一。传统的定量医学成像(放射组学)可以扩展到计算体素特征,并聚合具有相似影像学表型(成像生境)的肿瘤亚区,以阐明肿瘤内和肿瘤间肿瘤异质性的分布。尽管成像生境具有广阔的应用前景,但它们可能会受到放射组学特征可变性的影响,从而阻碍成像生境技术的比较和推广。我们对 500 多名肺癌患者的 CT 图像进行了全面的体素放射组学特征重复性和可再现性分析,并在 30 名具有测试-重测图像的肺癌患者中展示了体素放射组学可变性对成像生境计算的影响。可重复的体素特征特征化了纹理异质性,并且无论应用的特征提取参数如何,都具有可再现性。使用稳健的放射组学特征计算的成像生境比使用同一患者的测试-重测 CT 中所有特征计算的成像生境更稳定。有 9 个体素放射组学特征(联合能量、联合熵、和熵、最大概率、差异熵、Imc1、Imc2、Idn 和 Idmn)是可重复和可再现的。这支持了它们在计算肺肿瘤成像生境中的应用,以发现以前未发现的肿瘤异质性,并为精准医学开发新的非侵入性成像生物标志物。