Suppr超能文献

重编程、Notch 过度激活和运动神经元代谢中的异质截短 MT-ATP6 突变阈值。

Threshold of heteroplasmic truncating MT-ATP6 mutation in reprogramming, Notch hyperactivation and motor neuron metabolism.

机构信息

Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland.

Department of Physics, University of Helsinki, Finland.

出版信息

Hum Mol Genet. 2022 Mar 21;31(6):958-974. doi: 10.1093/hmg/ddab299.

Abstract

Mutations in mitochondrial DNA encoded subunit of ATP synthase, MT-ATP6, are frequent causes of neurological mitochondrial diseases with a range of phenotypes from Leigh syndrome and NARP to ataxias and neuropathies. Here we investigated the functional consequences of an unusual heteroplasmic truncating mutation m.9154C>T in MT-ATP6, which caused peripheral neuropathy, ataxia and IgA nephropathy. ATP synthase not only generates cellular ATP, but its dimerization is required for mitochondrial cristae formation. Accordingly, the MT-ATP6 truncating mutation impaired the assembly of ATP synthase and disrupted cristae morphology, supporting our molecular dynamics simulations that predicted destabilized a/c subunit subcomplex. Next, we modeled the effects of the truncating mutation using patient-specific induced pluripotent stem cells. Unexpectedly, depending on mutation heteroplasmy level, the truncation showed multiple threshold effects in cellular reprogramming, neurogenesis and in metabolism of mature motor neurons (MN). Interestingly, MN differentiation beyond progenitor stage was impaired by Notch hyperactivation in the MT-ATP6 mutant, but not by rotenone-induced inhibition of mitochondrial respiration, suggesting that altered mitochondrial morphology contributed to Notch hyperactivation. Finally, we also identified a lower mutation threshold for a metabolic shift in mature MN, affecting lactate utilization, which may be relevant for understanding the mechanisms of mitochondrial involvement in peripheral motor neuropathies. These results establish a critical and disease-relevant role for ATP synthase in human cell fate decisions and neuronal metabolism.

摘要

线粒体 DNA 编码 ATP 合酶亚单位的突变,MT-ATP6,是神经线粒体疾病的常见原因,其表型范围从 Leigh 综合征和 NARP 到共济失调和神经病变。在这里,我们研究了导致周围神经病、共济失调和 IgA 肾病的异常异质性截断突变 m.9154C>T 在 MT-ATP6 中的功能后果。ATP 合酶不仅产生细胞内的 ATP,而且其二聚化对于线粒体嵴的形成是必需的。因此,MT-ATP6 截断突变破坏了 ATP 合酶的组装并破坏了嵴形态,支持我们的分子动力学模拟预测不稳定的 a/c 亚基亚复合物。接下来,我们使用患者特异性诱导多能干细胞来模拟截断突变的影响。出乎意料的是,根据突变异质性水平,截断突变在细胞重编程、神经发生以及成熟运动神经元 (MN) 的代谢中表现出多种阈值效应。有趣的是,在 MT-ATP6 突变体中 Notch 过度激活会损害 MN 分化超出祖细胞阶段,但不会因抑制线粒体呼吸的鱼藤酮引起,这表明改变的线粒体形态有助于 Notch 过度激活。最后,我们还确定了成熟 MN 中代谢转变的更低突变阈值,影响乳酸盐的利用,这可能有助于理解线粒体参与周围运动神经病的机制。这些结果确立了 ATP 合酶在人类细胞命运决定和神经元代谢中的关键和疾病相关作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b65c/8947243/700b5e713101/ddab299f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验