Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA.
J Math Biol. 2021 Oct 11;83(5):48. doi: 10.1007/s00285-021-01670-7.
The chemical master equation (CME) is a fundamental description of interacting molecules commonly used to model chemical kinetics and noisy gene regulatory networks. Exact time-dependent solutions of the CME-which typically consists of infinitely many coupled differential equations-are rare, and are valuable for numerical benchmarking and getting intuition for the behavior of more complicated systems. Jahnke and Huisinga's landmark calculation of the exact time-dependent solution of the CME for monomolecular reaction systems is one of the most general analytic results known; however, it is hard to generalize, because it relies crucially on special properties of monomolecular reactions. In this paper, we rederive Jahnke and Huisinga's result on the time-dependent probability distribution and moments of monomolecular reaction systems using the Doi-Peliti path integral approach, which reduces solving the CME to evaluating many integrals. While the Doi-Peliti approach is less intuitive, it is also more mechanical, and hence easier to generalize. To illustrate how the Doi-Peliti approach can go beyond the method of Jahnke and Huisinga, we also find an explicit and exact time-dependent solution to a problem involving an autocatalytic reaction that Jahnke and Huisinga identified as not solvable using their method. Most interestingly, we are able to find a formal exact time-dependent solution for any CME whose list of reactions involves only zero and first order reactions, which may be the most general result currently known. This formal solution also yields a useful algorithm for efficiently computing numerical solutions to CMEs of this type.
化学主方程(CME)是一种常用的描述相互作用分子的基本描述,用于模拟化学动力学和嘈杂的基因调控网络。CME 的精确时间相关解——通常由无穷多的耦合微分方程组成——很少见,对于数值基准测试和对更复杂系统的行为获得直觉很有价值。Jahnke 和 Huisinga 对单分子反应系统的 CME 的精确时间相关解的里程碑式计算是已知的最通用的分析结果之一;然而,它很难推广,因为它严重依赖于单分子反应的特殊性质。在本文中,我们使用 Doi-Peliti 路径积分方法重新推导了 Jahnke 和 Huisinga 关于单分子反应系统的时间相关概率分布和矩的结果,该方法将求解 CME 简化为评估许多积分。虽然 Doi-Peliti 方法不那么直观,但它也更机械,因此更容易推广。为了说明 Doi-Peliti 方法如何超越 Jahnke 和 Huisinga 的方法,我们还找到了一个涉及自催化反应的问题的显式和精确的时间相关解,Jahnke 和 Huisinga 确定该方法无法解决该问题。最有趣的是,我们能够为任何涉及仅零阶和一阶反应的反应列表的 CME 找到一个正式的精确时间相关解,这可能是目前已知的最通用的结果。该正式解还为计算此类 CME 的数值解提供了一种有用的算法。