Suppr超能文献

≤4cm 透明细胞肾细胞癌的预测:超声特征的视觉评估与超声图像组学分析

Prediction of clear cell renal cell carcinoma ≤ 4cm: visual assessment of ultrasound characteristics versus ultrasonographic radiomics analysis.

作者信息

Yang Fan, Zhang Dai, Zhao Li-Hui, Mao Yi-Ran, Mu Jie, Wang Hai-Ling, Pang Liang, Yang Shi-Qiang, Wei Xi, Liu Chun-Wei

机构信息

Department of Ultrasound Diagnosis and Treatment, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.

Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, China.

出版信息

Front Oncol. 2024 Jul 23;14:1298710. doi: 10.3389/fonc.2024.1298710. eCollection 2024.

Abstract

OBJECTIVE

To investigate the diagnostic efficacy of the clinical ultrasound imaging model, ultrasonographic radiomics model, and comprehensive model based on ultrasonographic radiomics for the differentiation of small clear cell Renal Cell Carcinoma (ccRCC) and Renal Angiomyolipoma (RAML).

METHODS

The clinical, ultrasound, and contrast-enhanced CT(CECT) imaging data of 302 small renal tumors (maximum diameter ≤ 4cm) patients in Tianjin Medical University Cancer Institute and Hospital from June 2018 to June 2022 were retrospectively analyzed, with 182 patients of ccRCC and 120 patients of RAML. The ultrasound images of the largest diameter of renal tumors were manually segmented by ITK-SNAP software, and Pyradiomics (v3.0.1) module in Python 3.8.7 was applied to extract ultrasonographic radiomics features from ROI segmented images. The patients were randomly divided into training and internal validation cohorts in the ratio of 7:3. The Random Forest algorithm of the Sklearn module was applied to construct the clinical ultrasound imaging model, ultrasonographic radiomics model, and comprehensive model. The efficacy of the prediction models was verified in an independent external validation cohort consisting of 69 patients, from 230 small renal tumor patients in two different institutions. The Delong test compared the predictive ability of three models and CECT. Calibration Curve and clinical Decision Curve Analysis were applied to evaluate the model and determine the net benefit to patients.

RESULTS

491 ultrasonographic radiomics features were extracted from 302 small renal tumor patients, and 9 ultrasonographic radiomics features were finally retained for modeling after regression and dimensionality reduction. In the internal validation cohort, the area under the curve (AUC), sensitivity, specificity, and accuracy of the clinical ultrasound imaging model, ultrasonographic radiomics model, comprehensive model, and CECT were 0.75, 76.7%, 60.0%, 70.0%; 0.80, 85.6%, 61.7%, 76.0%; 0.88, 90.6%, 76.7%, 85.0% and 0.90, 92.6%, 88.9%, 91.1%, respectively. In the external validation cohort, AUC, sensitivity, specificity, and accuracy of the three models and CECT were 0.73, 67.5%, 69.1%, 68.3%; 0.89, 86.7%, 80.0%, 83.5%; 0.90, 85.0%, 85.5%, 85.2% and 0.91, 94.6%, 88.3%, 91.3%, respectively. The DeLong test showed no significant difference between the clinical ultrasound imaging model and the ultrasonographic radiomics model (Z=-1.287, P=0.198). The comprehensive model showed superior diagnostic performance than the ultrasonographic radiomics model (Z=4. 394, P<0.001) and the clinical ultrasound imaging model (Z=4. 732, P<0.001). Moreover, there was no significant difference in AUC between the comprehensive model and CECT (Z=-0.252, P=0.801). Both in the internal and external validation cohort, the Calibration Curve and Decision Curve Analysis showed a better performance of the comprehensive model.

CONCLUSION

It is feasible to construct an ultrasonographic radiomics model for distinguishing small ccRCC and RAML based on ultrasound images, and the diagnostic performance of the comprehensive model is superior to the clinical ultrasound imaging model and ultrasonographic radiomics model, similar to that of CECT.

摘要

目的

探讨临床超声成像模型、超声影像组学模型及基于超声影像组学的综合模型对小体积透明细胞肾细胞癌(ccRCC)与肾血管平滑肌脂肪瘤(RAML)的鉴别诊断效能。

方法

回顾性分析2018年6月至2022年6月在天津医科大学肿瘤医院就诊的302例小肾肿瘤(最大直径≤4cm)患者的临床、超声及增强CT(CECT)影像资料,其中ccRCC患者182例,RAML患者120例。采用ITK-SNAP软件对肾肿瘤最大直径处的超声图像进行手动分割,运用Python 3.8.7中的Pyradiomics(v3.0.1)模块从分割后的感兴趣区(ROI)图像中提取超声影像组学特征。患者按7∶3比例随机分为训练组和内部验证组。应用Sklearn模块的随机森林算法构建临床超声成像模型、超声影像组学模型及综合模型。在由来自两个不同机构的230例小肾肿瘤患者中的69例患者组成的独立外部验证组中验证预测模型的效能。采用Delong检验比较三种模型与CECT的预测能力。应用校准曲线和临床决策曲线分析评估模型并确定对患者的净获益。

结果

从302例小肾肿瘤患者中提取了491个超声影像组学特征,经回归和降维后最终保留9个超声影像组学特征用于建模。在内部验证组中,临床超声成像模型、超声影像组学模型、综合模型及CECT的曲线下面积(AUC)、灵敏度、特异度及准确度分别为0.75、76.7%、60.0%、70.0%;0.80、85.6%、61.7%、76.0%;0.88、90.6%、76.7%、85.0%和0.90、92.6%、88.9%、91.1%。在外部验证组中,三种模型及CECT的AUC、灵敏度、特异度及准确度分别为0.73、67.5%、69.1%、68.3%;0.89、86.7%、80.0%、83.5%;0.90、85.0%、85.5%、85.2%和0.91、94.6%、88.3%、91.3%。Delong检验显示临床超声成像模型与超声影像组学模型之间无显著差异(Z=-1.287,P=0.198)。综合模型的诊断性能优于超声影像组学模型(Z=4.394,P<0.001)和临床超声成像模型(Z=4.732,P<0.001)。此外,综合模型与CECT的AUC之间无显著差异(Z=-0.252,P=0.801)。在内部和外部验证组中,校准曲线和决策曲线分析均显示综合模型表现更佳。

结论

基于超声图像构建鉴别小体积ccRCC与RAML的超声影像组学模型是可行的,综合模型的诊断性能优于临床超声成像模型和超声影像组学模型,与CECT相似。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c175/11304449/9d4ffbaeef09/fonc-14-1298710-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验