Suppr超能文献

基于多期对比增强CT的机器学习模型预测透明细胞肾细胞癌的福尔曼核分级

Multiphase Contrast-Enhanced CT-Based Machine Learning Models to Predict the Fuhrman Nuclear Grade of Clear Cell Renal Cell Carcinoma.

作者信息

Lai Shengsheng, Sun Lei, Wu Jialiang, Wei Ruili, Luo Shiwei, Ding Wenshuang, Liu Xilong, Yang Ruimeng, Zhen Xin

机构信息

School of Medical Equipment, Guangdong Food and Drug Vocational College, Guangzhou, Guangdong, 510520, People's Republic of China.

School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China.

出版信息

Cancer Manag Res. 2021 Feb 4;13:999-1008. doi: 10.2147/CMAR.S290327. eCollection 2021.

Abstract

OBJECTIVE

To investigate the predictive performance of different machine learning models for the discrimination of low and high nuclear grade clear cell renal cell carcinoma (ccRCC) by using multiphase computed tomography (CT)-based radiomic features.

MATERIALS AND METHODS

A total of 137 consecutive patients with pathologically proven ccRCC (including 96 low-grade [grade 1 or 2] and 41 high-grade [grade 3 or 4] ccRCC) from January 2011 to January 2019 were enrolled in this retrospective study. Target region of interest (ROI) delineation followed by texture extraction was performed on a representative slice with the largest section of the tumor on the four-phase (unenhanced phase [UP], corticomedullary phase [CMP], nephrographic phase [NP] and excretory phase [EP]) CT images. Fifteen concatenations of the four-phase features were fed into 176 classification models (built with 8 classifiers and 22 feature selection methods), the classification performances of the 2640 resultant discriminative models were compared, and the top-ranked features were analyzed.

RESULTS

Image features extracted from the unenhanced phase (UP) CT images demonstrated a dominant classification performance over features from the other three phases. The discriminative model "Bagging + CMIM" achieved the highest classification AUC of 0.75. The top-ranked features from the UP included one shape-based feature and five first-order statistical features.

CONCLUSION

Image features extracted from the UP are more effective than other CT phases in differentiating low and high nuclear grade ccRCC based on machine learning-based classification modeling.

摘要

目的

利用基于多期计算机断层扫描(CT)的影像组学特征,研究不同机器学习模型对低核级和高核级透明细胞肾细胞癌(ccRCC)的鉴别预测性能。

材料与方法

本回顾性研究纳入了2011年1月至2019年1月期间连续的137例经病理证实的ccRCC患者(包括96例低级别[1或2级]和41例高级别[3或4级]ccRCC)。在四期(平扫期[UP]、皮质髓质期[CMP]、肾实质期[NP]和排泄期[EP])CT图像上,在肿瘤最大截面的代表性切片上进行感兴趣目标区域(ROI)勾画并随后进行纹理提取。将四期特征的15种串联组合输入176个分类模型(由8种分类器和22种特征选择方法构建),比较2640个所得判别模型的分类性能,并分析排名靠前的特征。

结果

从平扫期(UP)CT图像中提取的图像特征显示出比其他三期特征更具优势的分类性能。判别模型“Bagging + CMIM”实现了最高的分类AUC,为0.75。来自UP的排名靠前的特征包括一个基于形状的特征和五个一阶统计特征。

结论

基于机器学习分类建模,从UP提取的图像特征在区分低核级和高核级ccRCC方面比其他CT期更有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3835/7869703/cb0b6b80e4d9/CMAR-13-999-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验