Suppr超能文献

染色质层面的基因组维护机制。

Genome Maintenance Mechanisms at the Chromatin Level.

机构信息

School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-Machi, Kanazawa 920-1192, Japan.

Signal Transduction Program, Gunma University Initiative for Advanced Research (GIAR), 3-39-22, Showa-Machi, Maebashi 371-8511, Japan.

出版信息

Int J Mol Sci. 2021 Sep 27;22(19):10384. doi: 10.3390/ijms221910384.

Abstract

Genome integrity is constantly threatened by internal and external stressors, in both animals and plants. As plants are sessile, a variety of environment stressors can damage their DNA. In the nucleus, DNA twines around histone proteins to form the higher-order structure "chromatin". Unraveling how chromatin transforms on sensing genotoxic stress is, thus, key to understanding plant strategies to cope with fluctuating environments. In recent years, accumulating evidence in plant research has suggested that chromatin plays a crucial role in protecting DNA from genotoxic stress in three ways: (1) changes in chromatin modifications around damaged sites enhance DNA repair by providing a scaffold and/or easy access to DNA repair machinery; (2) DNA damage triggers genome-wide alterations in chromatin modifications, globally modulating gene expression required for DNA damage response, such as stem cell death, cell-cycle arrest, and an early onset of endoreplication; and (3) condensed chromatin functions as a physical barrier against genotoxic stressors to protect DNA. In this review, we highlight the chromatin-level control of genome stability and compare the regulatory systems in plants and animals to find out unique mechanisms maintaining genome integrity under genotoxic stress.

摘要

基因组完整性经常受到内部和外部应激源的威胁,无论是在动物还是植物中。由于植物是固定不动的,各种环境应激源都可能损害它们的 DNA。在细胞核中,DNA 缠绕在组蛋白上形成更高阶的结构“染色质”。因此,了解染色质在感知基因毒性应激时如何发生转变对于理解植物应对不断变化的环境的策略至关重要。近年来,植物研究中的大量证据表明,染色质通过以下三种方式在保护 DNA 免受基因毒性应激方面发挥着关键作用:(1)在受损部位周围发生的染色质修饰变化通过提供支架和/或便于 DNA 修复机制进入,从而增强 DNA 修复;(2)DNA 损伤引发染色质修饰的全基因组改变,全局调节 DNA 损伤反应所需的基因表达,例如干细胞死亡、细胞周期停滞和早期内复制的开始;(3)浓缩的染色质作为物理屏障抵御基因毒性应激源以保护 DNA。在这篇综述中,我们强调了染色质水平对基因组稳定性的控制,并比较了植物和动物中的调控系统,以找出在基因毒性应激下维持基因组完整性的独特机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0701/8508675/3718c4470b11/ijms-22-10384-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验