Suppr超能文献

在细胞骨架和液泡的连接点:植物细胞骨架如何控制大液泡的动态。

At the Nexus between Cytoskeleton and Vacuole: How Plant Cytoskeletons Govern the Dynamics of Large Vacuoles.

机构信息

School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.

Faculty of Advanced Science and Technology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.

出版信息

Int J Mol Sci. 2023 Feb 18;24(4):4143. doi: 10.3390/ijms24044143.

Abstract

Large vacuoles are a predominant cell organelle throughout the plant body. They maximally account for over 90% of cell volume and generate turgor pressure that acts as a driving force of cell growth, which is essential for plant development. The plant vacuole also acts as a reservoir for sequestering waste products and apoptotic enzymes, thereby enabling plants to rapidly respond to fluctuating environments. Vacuoles undergo dynamic transformation through repeated enlargement, fusion, fragmentation, invagination, and constriction, eventually resulting in the typical 3-dimensional complex structure in each cell type. Previous studies have indicated that such dynamic transformations of plant vacuoles are governed by the plant cytoskeletons, which consist of F-actin and microtubules. However, the molecular mechanism of cytoskeleton-mediated vacuolar modifications remains largely unclear. Here we first review the behavior of cytoskeletons and vacuoles during plant development and in response to environmental stresses, and then introduce candidates that potentially play pivotal roles in the vacuole-cytoskeleton nexus. Finally, we discuss factors hampering the advances in this research field and their possible solutions using the currently available cutting-edge technologies.

摘要

大液泡是贯穿植物体的主要细胞细胞器。它们最大可占细胞体积的 90%以上,并产生膨压,作为细胞生长的驱动力,这对植物发育至关重要。植物液泡还作为废物和凋亡酶的隔离库,从而使植物能够快速应对不断变化的环境。液泡通过反复的扩大、融合、分裂、内陷和收缩进行动态转化,最终导致每种细胞类型都具有典型的 3 维复杂结构。先前的研究表明,植物液泡的这种动态转化受植物细胞骨架的控制,细胞骨架由 F-肌动蛋白和微管组成。然而,细胞骨架介导的液泡修饰的分子机制在很大程度上仍不清楚。在这里,我们首先回顾了细胞骨架和液泡在植物发育过程中和应对环境胁迫时的行为,然后介绍了在液泡-细胞骨架连接中可能发挥关键作用的候选物。最后,我们讨论了阻碍该研究领域进展的因素及其可能的解决方案,使用了目前可用的前沿技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e2a/9967756/aa87c192ac66/ijms-24-04143-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验