Suppr超能文献

具有生物相容性粘合剂的3D打印聚合物渗透陶瓷网络,用于增强牙科植入应用。

3D-Printed Polymer-Infiltrated Ceramic Network with Biocompatible Adhesive to Potentiate Dental Implant Applications.

作者信息

Hodásová Ľudmila, Alemán Carlos, Del Valle Luís J, Llanes Luis, Fargas Gemma, Armelin Elaine

机构信息

Departament d'Enginyeria Química, IMEM Group, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Building I, 2nd Floor, 08019 Barcelona, Spain.

Departament de Ciència i Enginyeria de Materials, CIEFMA Group, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Building I, 1st Floor, 08019 Barcelona, Spain.

出版信息

Materials (Basel). 2021 Sep 23;14(19):5513. doi: 10.3390/ma14195513.

Abstract

The aim of this work was to prepare and characterize polymer-ceramic composite material for dental applications, which must resist fracture and wear under extreme forces. It must also be compatible with the hostile environment of the oral cavity. The most common restorative and biocompatible copolymer, 2,2-bis(p-(2'-2-hydroxy-3'-methacryloxypropoxy)phenyl)propane and triethyleneglycol dimethacrylate, was combined with 3D-printed yttria-stabilized tetragonal zirconia scaffolds with a 50% infill. The proper scaffold deposition and morphology of samples with 50% zirconia infill were studied by means of X-ray computed microtomography and scanning electron microscopy. Samples that were infiltrated with copolymer were observed under compression stress, and the structure's failure was recorded using an Infrared Vic 2D camera, in comparison with empty scaffolds. The biocompatibility of the composite material was ascertained with an MG-63 cell viability assay. The microtomography proves the homogeneous distribution of pores throughout the whole sample, whereas the presence of the biocompatible copolymer among the ceramic filaments, referred to as a polymer-infiltrated ceramic network (PICN), results in a safety "damper", preventing crack propagation and securing the desired material flexibility, as observed by an infrared camera in real time. The study represents a challenge for future dental implant applications, demonstrating that it is possible to combine the fast robocasting of ceramic paste and covalent bonding of polymer adhesive for hybrid material stabilization.

摘要

这项工作的目的是制备并表征用于牙科应用的聚合物-陶瓷复合材料,该材料必须在极端力作用下抵抗断裂和磨损。它还必须与口腔的恶劣环境相容。最常见的修复性和生物相容性共聚物,2,2-双(对-(2'-2-羟基-3'-甲基丙烯酰氧基丙氧基)苯基)丙烷和三乙二醇二甲基丙烯酸酯,与50%填充率的3D打印氧化钇稳定四方氧化锆支架相结合。通过X射线计算机显微断层扫描和扫描电子显微镜研究了氧化锆填充率为50%的样品的适当支架沉积和形态。对用共聚物渗透的样品施加压缩应力进行观察,并与空支架相比,使用红外Vic 2D相机记录结构的破坏情况。通过MG-63细胞活力测定确定复合材料的生物相容性。显微断层扫描证明了整个样品中孔隙的均匀分布,而生物相容性共聚物在陶瓷细丝中的存在,即所谓的聚合物渗透陶瓷网络(PICN),形成了一个安全的“减震器”,可防止裂纹扩展并确保所需的材料柔韧性,这一点通过红外相机实时观察到。该研究对未来的牙科植入应用构成了挑战,表明将陶瓷浆料的快速机器人铸造与聚合物粘合剂的共价键合相结合以稳定混合材料是可行的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13e8/8509517/6b6411ce723a/materials-14-05513-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验