Suppr超能文献

归一化和颜色特征对超像素分类的影响:在细胞学图像分割中的应用

Influence of normalization and color features on super-pixel classification: application to cytological image segmentation.

作者信息

Bechar Mohammed El Amine, Settouti Nesma, Daho Mostafa El Habib, Adel Mouloud, Chikh Mohammed Amine

机构信息

CNRS, Centrale Marseille, Aix Marseille Univ, Institut Fresnel UMR 7249, 13013, Marseille, France.

Biomedical Engineering Laboratory GBM, Tlemcen University, Tlemcen, Algeria.

出版信息

Australas Phys Eng Sci Med. 2019 Jun;42(2):427-441. doi: 10.1007/s13246-019-00735-8. Epub 2019 Mar 4.

Abstract

Super-pixel feature extraction is a key problem to get an acceptable performance in color super-pixel classification. Given a color feature extraction problem, it is necessary to know which is the best approach to solve this problem. In the current work, we're interested in the challenge of nucleus and cytoplasm automatic recognition in the cytological image. We propose an automatic process for white blood cells (WBC) segmentation using super-pixel classification. The process is divided into five steps. In first step, the color normalization is calculated. The super-pixels generation by Simple Linear Iterative Clustering algorithm is performed in the second step. In third step, the color property is used to achieve illumination invariance. In fourth step, color features are calculated on each super-pixel. Finally, supervised learning is realized to classify each super-pixel into nucleus and cytoplasm region. The present work rallied an exhaustive statistical evaluation of a very wide variety of the color super-pixel classification, with height normalization methods, four-color spaces and four feature extraction techniques. Normalization and color spaces slightly increase the average accuracy of super-pixel classification. Our experiments based to statistical comparison allow to conclude that comprehensive gray world normalized normalization is better than without normalization for super-pixel classification achieving the first positions in the Friedman ranking. RGB space is the best color spaces to be used in super-pixel feature extraction for nucleus and cytoplasm segmentation. For feature extraction, the learning methods work better on the first order statistics features for the automatic WBC segmentation.

摘要

超像素特征提取是在彩色超像素分类中获得可接受性能的关键问题。给定一个颜色特征提取问题,有必要知道解决该问题的最佳方法是什么。在当前的工作中,我们关注细胞学图像中细胞核和细胞质自动识别的挑战。我们提出了一种使用超像素分类进行白细胞(WBC)分割的自动过程。该过程分为五个步骤。第一步,计算颜色归一化。第二步,通过简单线性迭代聚类算法生成超像素。第三步,使用颜色属性实现光照不变性。第四步,在每个超像素上计算颜色特征。最后,实现监督学习将每个超像素分类为细胞核和细胞质区域。目前的工作对非常多种颜色超像素分类进行了详尽的统计评估,包括高度归一化方法、四种颜色空间和四种特征提取技术。归一化和颜色空间略微提高了超像素分类的平均准确率。基于统计比较的我们的实验可以得出结论,对于超像素分类,综合灰度世界归一化比未归一化更好,在弗里德曼排名中位居首位。RGB空间是用于细胞核和细胞质分割的超像素特征提取的最佳颜色空间。对于特征提取,学习方法在用于自动白细胞分割的一阶统计特征上效果更好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验