Suppr超能文献

知情注意预测器:一种基于先验知识辅助癌症诊断的可推广架构。

Informed Attentive Predictors: A Generalisable Architecture for Prior Knowledge-Based Assisted Diagnosis of Cancers.

机构信息

School of Informatics, Xiamen University, Xiamen 361001, China.

出版信息

Sensors (Basel). 2021 Sep 28;21(19):6484. doi: 10.3390/s21196484.

Abstract

Due to the high mortality of many cancers and their related diseases, the prediction and prognosis techniques of cancers are being extensively studied to assist doctors in making diagnoses. Many machine-learning-based cancer predictors have been put forward, but many of them have failed to become widely utilised due to some crucial problems. For example, most methods require too much training data, which is not always applicable to institutes, and the complicated genetic mutual effects of cancers are generally ignored in many proposed methods. Moreover, a majority of these assist models are actually not safe to use, as they are generally built on black-box machine learners that lack references from related field knowledge. We observe that few machine-learning-based cancer predictors are capable of employing prior knowledge (PrK) to mitigate these issues. Therefore, in this paper, we propose a generalisable informed machine learning architecture named the Informed Attentive Predictor (IAP) to make PrK available to the predictor's decision-making phases and apply it to the field of cancer prediction. Specifically, we make several implementations of the IAP and evaluate its performance on six TCGA datasets to demonstrate the effectiveness of our architecture as an assist system framework for actual clinical usage. The experimental results show a noticeable improvement in IAP models on accuracies, f1-scores and recall rates compared to their non-IAP counterparts (i.e., basic predictors).

摘要

由于许多癌症及其相关疾病的死亡率很高,因此正在广泛研究癌症的预测和预后技术,以帮助医生进行诊断。已经提出了许多基于机器学习的癌症预测器,但由于一些关键问题,许多都未能得到广泛应用。例如,大多数方法都需要太多的训练数据,这并不总是适用于机构,而且许多提出的方法通常忽略了癌症的复杂遗传相互作用。此外,这些辅助模型中的大多数实际上是不安全的,因为它们通常建立在缺乏相关领域知识参考的黑盒机器学习器上。我们观察到,很少有基于机器学习的癌症预测器能够利用先验知识 (PrK) 来缓解这些问题。因此,在本文中,我们提出了一种可推广的信息机器学习架构,名为知情注意预测器 (IAP),以使 PrK 可用于预测器的决策阶段,并将其应用于癌症预测领域。具体来说,我们对 IAP 进行了几次实现,并在六个 TCGA 数据集上评估其性能,以证明我们的架构作为实际临床使用的辅助系统框架的有效性。实验结果表明,与非 IAP 模型(即基本预测器)相比,IAP 模型在准确性、f1 分数和召回率方面有了明显的提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b1/8512568/b4d4ceaf75bf/sensors-21-06484-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验