文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

将机器学习与人类知识相结合。

Integrating Machine Learning with Human Knowledge.

作者信息

Deng Changyu, Ji Xunbi, Rainey Colton, Zhang Jianyu, Lu Wei

机构信息

Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.

Department of Materials Science & Engineering, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

iScience. 2020 Oct 9;23(11):101656. doi: 10.1016/j.isci.2020.101656. eCollection 2020 Nov 20.


DOI:10.1016/j.isci.2020.101656
PMID:33134890
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7588855/
Abstract

Machine learning has been heavily researched and widely used in many disciplines. However, achieving high accuracy requires a large amount of data that is sometimes difficult, expensive, or impractical to obtain. Integrating human knowledge into machine learning can significantly reduce data requirement, increase reliability and robustness of machine learning, and build explainable machine learning systems. This allows leveraging the vast amount of human knowledge and capability of machine learning to achieve functions and performance not available before and will facilitate the interaction between human beings and machine learning systems, making machine learning decisions understandable to humans. This paper gives an overview of the knowledge and its representations that can be integrated into machine learning and the methodology. We cover the fundamentals, current status, and recent progress of the methods, with a focus on popular and new topics. The perspectives on future directions are also discussed.

摘要

机器学习已经在许多学科中得到了深入研究和广泛应用。然而,要实现高精度需要大量数据,而这些数据有时难以获取、成本高昂或不切实际。将人类知识融入机器学习可以显著减少数据需求,提高机器学习的可靠性和鲁棒性,并构建可解释的机器学习系统。这使得能够利用大量的人类知识和机器学习的能力来实现以前无法实现的功能和性能,并将促进人类与机器学习系统之间的交互,使机器学习决策对人类来说是可理解的。本文概述了可以融入机器学习的知识及其表示形式和方法。我们涵盖了这些方法的基本原理、现状和最新进展,重点关注热门和新出现的主题。还讨论了未来方向的观点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f385/7588855/3fc9809714d7/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f385/7588855/a8fd719631f7/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f385/7588855/8e92f62ba7cc/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f385/7588855/3c5ed889e88c/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f385/7588855/5e937fa8dea6/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f385/7588855/c2019466e8f1/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f385/7588855/3fc9809714d7/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f385/7588855/a8fd719631f7/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f385/7588855/8e92f62ba7cc/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f385/7588855/3c5ed889e88c/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f385/7588855/5e937fa8dea6/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f385/7588855/c2019466e8f1/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f385/7588855/3fc9809714d7/gr5.jpg

相似文献

[1]
Integrating Machine Learning with Human Knowledge.

iScience. 2020-10-9

[2]
Explaining protein-protein interactions with knowledge graph-based semantic similarity.

Comput Biol Med. 2024-3

[3]
Identification of microstructures critically affecting material properties using machine learning framework based on metallurgists' thinking process.

Sci Rep. 2022-8-20

[4]
Explainable Artificial Intelligence for Predictive Modeling in Healthcare.

J Healthc Inform Res. 2022-2-11

[5]
Involvement of Machine Learning Tools in Healthcare Decision Making.

J Healthc Eng. 2021

[6]
Explainable Artificial Intelligence Recommendation System by Leveraging the Semantics of Adverse Childhood Experiences: Proof-of-Concept Prototype Development.

JMIR Med Inform. 2020-11-4

[7]
Artificial Intelligence and Machine Learning in Prostate Cancer Patient Management-Current Trends and Future Perspectives.

Diagnostics (Basel). 2021-2-20

[8]
Application of Machine Learning Based on Structured Medical Data in Gastroenterology.

Biomimetics (Basel). 2023-10-28

[9]
[A primer on machine learning].

Radiologe. 2020-1

[10]
Integrated Evolutionary Learning: An Artificial Intelligence Approach to Joint Learning of Features and Hyperparameters for Optimized, Explainable Machine Learning.

Front Artif Intell. 2022-4-5

引用本文的文献

[1]
Machine Learning-Enhanced Nanoparticle Design for Precision Cancer Drug Delivery.

Adv Sci (Weinh). 2025-8

[2]
Assessment of the Diagnostic Accuracy of Artificial Intelligence Software in Identifying Common Periodontal and Restorative Dental Conditions (Marginal Bone Loss, Periapical Lesion, Crown, Restoration, Dental Caries) in Intraoral Periapical Radiographs.

Diagnostics (Basel). 2025-6-4

[3]
Precision Rehabilitation After Youth Anterior Cruciate Ligament Reconstruction: Individualized Reinjury Risk Stratification and Modifiable Risk Factor Identification to Guide Late-Phase Rehabilitation.

Orthop J Sports Med. 2025-4-11

[4]
Revolutionizing ESCC prognosis: the efficiency of tumor-infiltrating immune cells (TIIC) signature score.

Discov Oncol. 2025-1-20

[5]
Thick Data Analytics (TDA): An Iterative and Inductive Framework for Algorithmic Improvement.

Am Stat. 2024

[6]
Deep learning application in prediction of cancer molecular alterations based on pathological images: a bibliographic analysis via CiteSpace.

J Cancer Res Clin Oncol. 2024-10-18

[7]
Global Research on Pandemics or Epidemics and Mental Health: A Natural Language Processing Study.

J Epidemiol Glob Health. 2024-9

[8]
Brain Disorder Detection and Diagnosis using Machine Learning and Deep Learning - A Bibliometric Analysis.

Curr Neuropharmacol. 2024

[9]
DIGIPREDICT: physiological, behavioural and environmental predictors of asthma attacks-a prospective observational study using digital markers and artificial intelligence-study protocol.

BMJ Open Respir Res. 2024-5-22

[10]
Towards proactive palliative care in oncology: developing an explainable EHR-based machine learning model for mortality risk prediction.

BMC Palliat Care. 2024-5-20

本文引用的文献

[1]
Self-directed online machine learning for topology optimization.

Nat Commun. 2022-1-19

[2]
Text Data Augmentation for Deep Learning.

J Big Data. 2021

[3]
Transfer Learning from Adult to Children for Speech Recognition: Evaluation, Analysis and Recommendations.

Comput Speech Lang. 2020-9

[4]
A Comprehensive Survey on Graph Neural Networks.

IEEE Trans Neural Netw Learn Syst. 2021-1

[5]
Improved protein structure prediction using potentials from deep learning.

Nature. 2020-1-15

[6]
In-Silico Molecular Binding Prediction for Human Drug Targets Using Deep Neural Multi-Task Learning.

Genes (Basel). 2019-11-7

[7]
Mapping the knowledge structure and trends of epilepsy genetics over the past decade: A co-word analysis based on medical subject headings terms.

Medicine (Baltimore). 2019-8

[8]
DQNViz: A Visual Analytics Approach to Understand Deep Q-Networks.

IEEE Trans Vis Comput Graph. 2018-9-5

[9]
Visual Analytics in Deep Learning: An Interrogative Survey for the Next Frontiers.

IEEE Trans Vis Comput Graph. 2018-6-4

[10]
Transfer Learning From Simulations on a Reference Anatomy for ECGI in Personalized Cardiac Resynchronization Therapy.

IEEE Trans Biomed Eng. 2018-5-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索