Suppr超能文献

Lobish:用于在基于通道变换和模式的语言检测中解释脑电图信号的符号语言。

Lobish: Symbolic Language for Interpreting Electroencephalogram Signals in Language Detection Using Channel-Based Transformation and Pattern.

作者信息

Tuncer Turker, Dogan Sengul, Tasci Irem, Baygin Mehmet, Barua Prabal Datta, Acharya U Rajendra

机构信息

Department of Digital Forensics Engineering, Technology Faculty, Firat University, 23119 Elazig, Türkiye.

Department of Neurology, School of Medicine, Firat University, 23119 Elazig, Türkiye.

出版信息

Diagnostics (Basel). 2024 Sep 8;14(17):1987. doi: 10.3390/diagnostics14171987.

Abstract

Electroencephalogram (EEG) signals contain information about the brain's state as they reflect the brain's functioning. However, the manual interpretation of EEG signals is tedious and time-consuming. Therefore, automatic EEG translation models need to be proposed using machine learning methods. In this study, we proposed an innovative method to achieve high classification performance with explainable results. We introduce channel-based transformation, a channel pattern (ChannelPat), the t algorithm, and Lobish (a symbolic language). By using channel-based transformation, EEG signals were encoded using the index of the channels. The proposed ChannelPat feature extractor encoded the transition between two channels and served as a histogram-based feature extractor. An iterative neighborhood component analysis (INCA) feature selector was employed to select the most informative features, and the selected features were fed into a new ensemble k-nearest neighbor (tkNN) classifier. To evaluate the classification capability of the proposed channel-based EEG language detection model, a new EEG language dataset comprising Arabic and Turkish was collected. Additionally, Lobish was introduced to obtain explainable outcomes from the proposed EEG language detection model. The proposed channel-based feature engineering model was applied to the collected EEG language dataset, achieving a classification accuracy of 98.59%. Lobish extracted meaningful information from the cortex of the brain for language detection.

摘要

脑电图(EEG)信号包含有关大脑状态的信息,因为它们反映了大脑的功能。然而,EEG信号的人工解读既繁琐又耗时。因此,需要使用机器学习方法提出自动EEG翻译模型。在本研究中,我们提出了一种创新方法,以实现具有可解释结果的高分类性能。我们引入了基于通道的变换、一种通道模式(ChannelPat)、t算法和Lobish(一种符号语言)。通过使用基于通道的变换,EEG信号使用通道索引进行编码。所提出的ChannelPat特征提取器对两个通道之间的转换进行编码,并作为基于直方图的特征提取器。采用迭代邻域成分分析(INCA)特征选择器来选择最具信息性的特征,并将所选特征输入到一个新的集成k近邻(tkNN)分类器中。为了评估所提出的基于通道的EEG语言检测模型的分类能力,收集了一个包含阿拉伯语和土耳其语的新EEG语言数据集。此外,引入了Lobish以从所提出的EEG语言检测模型中获得可解释的结果。所提出的基于通道的特征工程模型应用于收集的EEG语言数据集,分类准确率达到98.59%。Lobish从大脑皮层提取有意义的信息用于语言检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aba8/11393925/54f4c137861b/diagnostics-14-01987-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验