Suppr超能文献

基于质谱的单细胞多组学分析的集成策略。

An Integrated Strategy for Mass Spectrometry-Based Multiomics Analysis of Single Cells.

机构信息

Research Center for Analytical Sciences, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.

National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China.

出版信息

Anal Chem. 2021 Oct 26;93(42):14059-14067. doi: 10.1021/acs.analchem.0c05209. Epub 2021 Oct 13.

Abstract

Single-cell-based genomics and transcriptomics analysis have revealed substantial cellular heterogeneity among seemingly identical cells. Knowledge of the cellular heterogeneity at multiomics levels is vital for a better understanding of tumor metastasis and drug resistance, stem cell differentiation, and embryonic development. However, unlike genomics and transcriptomics studies, single-cell characterization of metabolites, proteins, and post-translational modifications at the omics level remains challenging due to the lack of amplification methods and the wide diversity of these biomolecules. Therefore, new tools that are capable of investigating these unamplifiable "omes" from the same single cells are in high demand. In this work, a microwell chip was prepared and the internal surface was modified for hydrophilic interaction liquid chromatography-based tandem extraction of metabolites and proteins and subsequent protein digestion. Next, direct electrospray ionization mass spectrometry was adopted for single-cell metabolome identification, and a data-independent acquisition-mass spectrometry approach was established for simultaneous proteome profiling and phosphoproteome analysis without phosphopeptide enrichment. This integrated strategy resulted in 132 putatively annotated compounds, more than 1200 proteins, and the first large-scale phosphorylation data set from single-cell analysis. Application of this strategy in chemical perturbation studies provides a multiomics view of cellular changes, demonstrating its capability for more comprehensive investigation of cellular heterogeneity.

摘要

基于单细胞的基因组学和转录组学分析揭示了看似相同的细胞之间存在大量的细胞异质性。在多组学水平上了解细胞异质性对于更好地理解肿瘤转移和耐药性、干细胞分化和胚胎发育至关重要。然而,与基因组学和转录组学研究不同,由于缺乏扩增方法和这些生物分子的广泛多样性,单细胞代谢物、蛋白质和翻译后修饰的组学水平特征仍然具有挑战性。因此,需要新的工具来从同一个单细胞中研究这些不可扩增的“组”。在这项工作中,制备了一个微孔芯片,并对其内部表面进行了亲水相互作用液相色谱串联提取代谢物和蛋白质以及随后的蛋白质消化的修饰。接下来,采用直接电喷雾电离质谱法进行单细胞代谢组鉴定,并建立了一种无需磷酸肽富集的无标记采集-质谱方法,用于同时进行蛋白质组谱分析和磷酸化蛋白质组分析。该集成策略产生了 132 种推定注释化合物、超过 1200 种蛋白质和来自单细胞分析的第一个大规模磷酸化数据集。该策略在化学干扰研究中的应用提供了细胞变化的多组学视图,证明了其对细胞异质性进行更全面研究的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验