Suppr超能文献

索引选择、压缩和记录时间表如何影响生态声景的描述。

How index selection, compression, and recording schedule impact the description of ecological soundscapes.

作者信息

Heath Becky E, Sethi Sarab S, Orme C David L, Ewers Robert M, Picinali Lorenzo

机构信息

Dyson School of Design Engineering Imperial College London London UK.

Department of Life Sciences Imperial College London London UK.

出版信息

Ecol Evol. 2021 Aug 26;11(19):13206-13217. doi: 10.1002/ece3.8042. eCollection 2021 Oct.

Abstract

Acoustic indices derived from environmental soundscape recordings are being used to monitor ecosystem health and vocal animal biodiversity. Soundscape data can quickly become very expensive and difficult to manage, so data compression or temporal down-sampling are sometimes employed to reduce data storage and transmission costs. These parameters vary widely between experiments, with the consequences of this variation remaining mostly unknown.We analyse field recordings from North-Eastern Borneo across a gradient of historical land use. We quantify the impact of experimental parameters (MP3 compression, recording length and temporal subsetting) on soundscape descriptors (Analytical Indices and a convolutional neural net derived AudioSet Fingerprint). Both descriptor types were tested for their robustness to parameter alteration and their usability in a soundscape classification task.We find that compression and recording length both drive considerable variation in calculated index values. However, we find that the effects of this variation and temporal subsetting on the performance of classification models is minor: performance is much more strongly determined by acoustic index choice, with Audioset fingerprinting offering substantially greater (12%-16%) levels of classifier accuracy, precision and recall.We advise using the AudioSet Fingerprint in soundscape analysis, finding superior and consistent performance even on small pools of data. If data storage is a bottleneck to a study, we recommend Variable Bit Rate encoded compression (quality = 0) to reduce file size to 23% file size without affecting most Analytical Index values. The AudioSet Fingerprint can be compressed further to a Constant Bit Rate encoding of 64 kb/s (8% file size) without any detectable effect. These recommendations allow the efficient use of restricted data storage whilst permitting comparability of results between different studies.

摘要

从环境声景录音中得出的声学指标正被用于监测生态系统健康状况和有声动物的生物多样性。声景数据可能很快变得非常昂贵且难以管理,因此有时会采用数据压缩或时间下采样来降低数据存储和传输成本。这些参数在不同实验之间差异很大,而这种差异的后果大多仍不为人所知。我们分析了婆罗洲东北部不同历史土地利用梯度下的实地录音。我们量化了实验参数(MP3压缩、录音时长和时间子集选取)对声景描述符(分析指标和卷积神经网络导出的音频集指纹)的影响。对这两种描述符类型都测试了它们对参数变化的稳健性以及在声景分类任务中的可用性。我们发现压缩和录音时长都会在计算出的指标值中引发相当大的变化。然而,我们发现这种变化和时间子集选取对分类模型性能的影响较小:性能更多地由声学指标选择强烈决定,音频集指纹识别提供的分类器准确率、精确率和召回率水平显著更高(高12% - 16%)。我们建议在声景分析中使用音频集指纹,即使在少量数据上也能发现卓越且一致的性能。如果数据存储是一项研究的瓶颈,我们推荐使用可变比特率编码压缩(质量 = 0)将文件大小减小到23%,而不影响大多数分析指标值。音频集指纹可以进一步压缩为64 kb/s的恒定比特率编码(文件大小为8%),且没有任何可察觉的影响。这些建议允许在有效利用有限数据存储的同时,使不同研究之间的结果具有可比性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e33/8495811/9440c4f32314/ECE3-11-13206-g006.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验