Suppr超能文献

一种基于自适应迁移学习的深度Cox神经网络用于肝细胞癌预后预测

An Adaptive Transfer-Learning-Based Deep Cox Neural Network for Hepatocellular Carcinoma Prognosis Prediction.

作者信息

Chai Hua, Xia Long, Zhang Lei, Yang Jiarui, Zhang Zhongyue, Qian Xiangjun, Yang Yuedong, Pan Weidong

机构信息

School of Mathematics and Big Data, Foshan University, Foshan, China.

Department of Pancreatic-Hepato-Biliary-Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.

出版信息

Front Oncol. 2021 Sep 27;11:692774. doi: 10.3389/fonc.2021.692774. eCollection 2021.

Abstract

BACKGROUND

Predicting hepatocellular carcinoma (HCC) prognosis is important for treatment selection, and it is increasingly interesting to predict prognosis through gene expression data. Currently, the prognosis remains of low accuracy due to the high dimension but small sample size of liver cancer omics data. In previous studies, a transfer learning strategy has been developed by pre-training models on similar cancer types and then fine-tuning the pre-trained models on the target dataset. However, transfer learning has limited performance since other cancer types are similar at different levels, and it is not trivial to balance the relations with different cancer types.

METHODS

Here, we propose an adaptive transfer-learning-based deep Cox neural network (ATRCN), where cancers are represented by 12 phenotype and 10 genotype features, and suitable cancers were adaptively selected for model pre-training. In this way, the pre-trained model can learn valuable prior knowledge from other cancer types while reducing the biases.

RESULTS

ATRCN chose pancreatic and stomach adenocarcinomas as the pre-training cancers, and the experiments indicated that our method improved the C-index of 3.8% by comparing with traditional transfer learning methods. The independent tests on three additional HCC datasets proved the robustness of our model. Based on the divided risk subgroups, we identified 10 HCC prognostic markers, including one new prognostic marker, . Further wet experiments indicated that is associated with the progression of liver cancer cells.

CONCLUSION

These results proved that our proposed deep-learning-based method for HCC prognosis prediction is robust, accurate, and biologically meaningful.

摘要

背景

预测肝细胞癌(HCC)的预后对于治疗方案的选择至关重要,通过基因表达数据预测预后也越来越受到关注。目前,由于肝癌组学数据维度高但样本量小,预后预测的准确性仍然较低。在先前的研究中,已经开发了一种迁移学习策略,即在相似癌症类型上预训练模型,然后在目标数据集上对预训练模型进行微调。然而,迁移学习的性能有限,因为其他癌症类型在不同程度上存在差异,平衡与不同癌症类型的关系并非易事。

方法

在此,我们提出了一种基于自适应迁移学习的深度Cox神经网络(ATRCN),其中癌症由12种表型和10种基因型特征表示,并自适应选择合适的癌症进行模型预训练。通过这种方式,预训练模型可以从其他癌症类型中学习有价值的先验知识,同时减少偏差。

结果

ATRCN选择胰腺癌和胃腺癌作为预训练癌症,实验表明,与传统迁移学习方法相比,我们的方法将C指数提高了3.8%。在另外三个HCC数据集上的独立测试证明了我们模型的稳健性。基于划分的风险亚组,我们确定了10个HCC预后标志物,包括一个新的预后标志物。进一步的湿实验表明,该标志物与肝癌细胞的进展有关。

结论

这些结果证明,我们提出的基于深度学习的HCC预后预测方法具有稳健性、准确性和生物学意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c5c/8504135/2783a4291b18/fonc-11-692774-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验