Suppr超能文献

嘌呤能受体配体:细胞因子风暴的抑制剂,治疗 COVID-19 的潜在治疗药物。

Purinergic receptor ligands: the cytokine storm attenuators, potential therapeutic agents for the treatment of COVID-19.

机构信息

Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

出版信息

Immunopharmacol Immunotoxicol. 2021 Dec;43(6):633-643. doi: 10.1080/08923973.2021.1988102. Epub 2021 Oct 14.

Abstract

The coronavirus disease-19 (COVID-19), at first, was reported in Wuhan, China, and then rapidly became pandemic throughout the world. Cytokine storm syndrome (CSS) in COVID-19 patients is associated with high levels of cytokines and chemokines that cause multiple organ failure, systemic inflammation, and hemodynamic instabilities. Acute respiratory distress syndrome (ARDS), a common complication of COVID-19, is a consequence of cytokine storm. In this regard, several drugs have been being investigated to suppress this inflammatory condition. Purinergic signaling receptors comprising of P1 adenosine and P2 purinoceptors play a critical role in inflammation. Therefore, activation or inhibition of some subtypes of these kinds of receptors is most likely to be beneficial to attenuate cytokine storm. This article summarizes suggested therapeutic drugs with potential anti-inflammatory effects through purinergic receptors.

摘要

新型冠状病毒病(COVID-19)最初在中国武汉报道,随后迅速在全球范围内流行。COVID-19 患者的细胞因子风暴综合征(CSS)与高水平的细胞因子和趋化因子有关,这些细胞因子和趋化因子会导致多器官衰竭、全身炎症和血流动力学不稳定。急性呼吸窘迫综合征(ARDS)是 COVID-19 的常见并发症,是细胞因子风暴的结果。在这方面,已经有几种药物被用于抑制这种炎症状态。嘌呤能信号受体包括 P1 腺苷和 P2 嘌呤能受体,在炎症中起关键作用。因此,激活或抑制这些受体的某些亚型很可能有助于减轻细胞因子风暴。本文总结了通过嘌呤能受体具有潜在抗炎作用的建议治疗药物。

相似文献

1
Purinergic receptor ligands: the cytokine storm attenuators, potential therapeutic agents for the treatment of COVID-19.
Immunopharmacol Immunotoxicol. 2021 Dec;43(6):633-643. doi: 10.1080/08923973.2021.1988102. Epub 2021 Oct 14.
2
Promising drug repurposing approach targeted for cytokine storm implicated in SARS-CoV-2 complications.
Immunopharmacol Immunotoxicol. 2021 Aug;43(4):395-409. doi: 10.1080/08923973.2021.1931302. Epub 2021 May 31.
3
Immunopathogenesis and treatment of cytokine storm in COVID-19.
Theranostics. 2021 Jan 1;11(1):316-329. doi: 10.7150/thno.49713. eCollection 2021.
4
A novel definition and treatment of hyperinflammation in COVID-19 based on purinergic signalling.
Purinergic Signal. 2022 Mar;18(1):13-59. doi: 10.1007/s11302-021-09814-6. Epub 2021 Nov 10.
5
Phytotherapy for treatment of cytokine storm in COVID-19.
Front Biosci (Landmark Ed). 2021 Apr 30;26(5):51-75. doi: 10.52586/4924.
6
An Impaired Inflammatory and Innate Immune Response in COVID-19.
Mol Cells. 2021 Jun 30;44(6):384-391. doi: 10.14348/molcells.2021.0068.
7
Neutrophil Extracellular Traps (NETs) and Covid-19: A new frontiers for therapeutic modality.
Int Immunopharmacol. 2022 Mar;104:108516. doi: 10.1016/j.intimp.2021.108516. Epub 2022 Jan 6.
8
Diagnosis of SARS-CoV-2 infection in the setting of the cytokine release syndrome.
Expert Rev Mol Diagn. 2020 Nov;20(11):1087-1097. doi: 10.1080/14737159.2020.1830760. Epub 2020 Oct 12.
9
Therapeutic potential of N-acetyl cysteine (NAC) in preventing cytokine storm in COVID-19: review of current evidence.
Eur Rev Med Pharmacol Sci. 2021 Mar;25(6):2802-2807. doi: 10.26355/eurrev_202103_25442.

引用本文的文献

2
Current treatment of Psoriasis triggered by Cytokine Storm and future immunomodulation strategies.
J Mol Med (Berl). 2024 Oct;102(10):1187-1198. doi: 10.1007/s00109-024-02481-1. Epub 2024 Aug 30.
3
Purinergic signaling: decoding its role in COVID-19 pathogenesis and promising treatment strategies.
Inflammopharmacology. 2023 Dec;31(6):3005-3020. doi: 10.1007/s10787-023-01344-4. Epub 2023 Oct 8.
4
Effects of Purinergic Receptor Deletion or Pharmacologic Modulation on Pulmonary Inflammation in Mice.
ACS Pharmacol Transl Sci. 2022 Oct 5;5(10):973-984. doi: 10.1021/acsptsci.2c00128. eCollection 2022 Oct 14.
5
The Potential of Purinergic Signaling to Thwart Viruses Including SARS-CoV-2.
Front Immunol. 2022 Jun 17;13:904419. doi: 10.3389/fimmu.2022.904419. eCollection 2022.
6
Alterations in CD39/CD73 axis of T cells associated with COVID-19 severity.
J Cell Physiol. 2022 Aug;237(8):3394-3407. doi: 10.1002/jcp.30805. Epub 2022 Jun 27.

本文引用的文献

2
Confronting COVID-19-associated cough and the post-COVID syndrome: role of viral neurotropism, neuroinflammation, and neuroimmune responses.
Lancet Respir Med. 2021 May;9(5):533-544. doi: 10.1016/S2213-2600(21)00125-9. Epub 2021 Apr 12.
3
The serotonin reuptake inhibitor Fluoxetine inhibits SARS-CoV-2 in human lung tissue.
Sci Rep. 2021 Mar 15;11(1):5890. doi: 10.1038/s41598-021-85049-0.
4
Differential and paradoxical roles of new-generation antidepressants in primary astrocytic inflammation.
J Neuroinflammation. 2021 Feb 18;18(1):47. doi: 10.1186/s12974-021-02097-z.
6
Impact of colchicine on mortality in patients with COVID-19: A meta-analysis.
Hellenic J Cardiol. 2021 Sep-Oct;62(5):374-377. doi: 10.1016/j.hjc.2020.11.012. Epub 2021 Jan 6.
7
Possible Role of Adenosine in COVID-19 Pathogenesis and Therapeutic Opportunities.
Front Pharmacol. 2020 Nov 26;11:594487. doi: 10.3389/fphar.2020.594487. eCollection 2020.
8
Potential Therapeutic Role of Purinergic Receptors in Cardiovascular Disease Mediated by SARS-CoV-2.
J Immunol Res. 2020 Dec 1;2020:8632048. doi: 10.1155/2020/8632048. eCollection 2020.
9
Persistent symptoms 3 months after a SARS-CoV-2 infection: the post-COVID-19 syndrome?
ERJ Open Res. 2020 Oct 26;6(4). doi: 10.1183/23120541.00542-2020. eCollection 2020 Oct.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验