Suppr超能文献

基于机器学习的 COVID-19 患者接受类固醇和瑞德西韦治疗的院内死亡率预测。

Prediction of in-hospital mortality with machine learning for COVID-19 patients treated with steroid and remdesivir.

机构信息

Department of Medicine, Icahn School of Medicine at Mount Sinai, Mount Sinai Beth Israel, New York City, New York, USA.

Department of Medicine, Division of Cardiology, Montefiore Medical Center, Albert Einstein Medical College, New York City, New York, USA.

出版信息

J Med Virol. 2022 Mar;94(3):958-964. doi: 10.1002/jmv.27393. Epub 2021 Oct 22.

Abstract

We aimed to create the prediction model of in-hospital mortality using machine learning methods for patients with coronavirus disease 2019 (COVID-19) treated with steroid and remdesivir. We reviewed 1571 hospitalized patients with laboratory confirmed COVID-19 from the Mount Sinai Health System treated with both steroids and remdesivir. The important variables associated with in-hospital mortality were identified using LASSO (least absolute shrinkage and selection operator) and SHAP (SHapley Additive exPlanations) through the light gradient boosting model (GBM). The data before February 17th, 2021 (N = 769) was randomly split into training and testing datasets; 80% versus 20%, respectively. Light GBM models were created with train data and area under the curves (AUCs) were calculated. Additionally, we calculated AUC with the data between February 17th, 2021 and March 30th, 2021 (N = 802). Of the 1571 patients admitted due to COVID-19, 331 (21.1%) died during hospitalization. Through LASSO and SHAP, we selected six important variables; age, hypertension, oxygen saturation, blood urea nitrogen, intensive care unit admission, and endotracheal intubation. AUCs using training and testing datasets derived from the data before February 17th, 2021 were 0.871/0.911. Additionally, the light GBM model has high predictability for the latest data (AUC: 0.881) (https://risk-model.herokuapp.com/covid). A high-value prediction model was created to estimate in-hospital mortality for COVID-19 patients treated with steroid and remdesivir.

摘要

我们旨在使用机器学习方法为接受皮质类固醇和瑞德西韦治疗的 2019 年冠状病毒病(COVID-19)患者创建住院死亡率预测模型。我们回顾了来自西奈山卫生系统的 1571 例接受皮质类固醇和瑞德西韦联合治疗的实验室确诊 COVID-19 住院患者。通过轻梯度提升模型(GBM)使用 LASSO(最小绝对收缩和选择算子)和 SHAP(Shapley 加法解释)确定与住院死亡率相关的重要变量。2021 年 2 月 17 日之前的数据(N=769)被随机分为训练和测试数据集;分别为 80%和 20%。使用训练数据创建轻 GBM 模型,并计算曲线下面积(AUC)。此外,我们还使用 2021 年 2 月 17 日至 2021 年 3 月 30 日之间的数据计算 AUC(N=802)。在因 COVID-19 住院的 1571 例患者中,有 331 例(21.1%)在住院期间死亡。通过 LASSO 和 SHAP,我们选择了六个重要变量;年龄、高血压、血氧饱和度、血尿素氮、重症监护病房入院和气管插管。使用来自 2021 年 2 月 17 日之前的数据的训练和测试数据集得出的 AUC 分别为 0.871/0.911。此外,轻 GBM 模型对最新数据具有很高的预测能力(AUC:0.881)(https://risk-model.herokuapp.com/covid)。创建了一个高价值的预测模型,以估计接受皮质类固醇和瑞德西韦治疗的 COVID-19 患者的住院死亡率。

相似文献

4
Real-life use of remdesivir in hospitalized patients with COVID-19.瑞德西韦在 COVID-19 住院患者中的实际应用。
Rev Esp Quimioter. 2021 Apr;34(2):136-140. doi: 10.37201/req/018.2021. Epub 2021 Mar 6.

引用本文的文献

4
Introduction to Clinical Prediction Models.临床预测模型导论
Ann Clin Epidemiol. 2022 Jul 1;4(3):72-80. doi: 10.37737/ace.22010. eCollection 2022.

本文引用的文献

8
Novel Machine Learning Can Predict Acute Asthma Exacerbation.新型机器学习可预测哮喘急性加重
Chest. 2021 May;159(5):1747-1757. doi: 10.1016/j.chest.2020.12.051. Epub 2021 Jan 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验