Suppr超能文献

临床预测模型导论

Introduction to Clinical Prediction Models.

作者信息

Iwagami Masao, Matsui Hiroki

机构信息

Department of Health Services Research, Faculty of Medicine, University of Tsukuba.

Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine.

出版信息

Ann Clin Epidemiol. 2022 Jul 1;4(3):72-80. doi: 10.37737/ace.22010. eCollection 2022.

Abstract

Clinical prediction models include a diagnostic prediction model to estimate the probability of an individual currently having a disease (e.g., pulmonary embolism) and a prognostic prediction model to estimate the probability of an individual developing a specific health outcome over a specific time period (e.g., myocardial infarction and stroke in 10 years). Clinical prediction models can be developed by applying traditional regression models (e.g., logistic and Cox regression models) or emerging machine learning models to real-world data, such as electronic health records and administrative claims data. For derivation, researchers select candidate variables based on a literature review and clinical knowledge, and predictor variables in the final model based on pre-defined criteria (e.g., thresholds for the size of relative risk and p-values) or strategies such as the stepwise regression and the least absolute shrinkage and selection operator (LASSO) regression. For validation, the clinical prediction model's performance is evaluated in terms of goodness of fit (e.g., R), discrimination (e.g., area under the receiver operating characteristic curve or c-statistics), and calibration (e.g., calibration plot and Hosmer-Lemeshow test). Performance of a new variable added to an existing clinical prediction model is evaluated in terms of reclassification (e.g., net reclassification improvement and integrated discrimination improvement). The model should be validated using the original data to examine internal validity through methods such as resampling (e.g., cross-validation and bootstrapping) and using other participants' data to examine external validity. For successful implementation of a clinical prediction model in actual clinical practice, presentation methods such as paper-based (nomogram) or web-based calculator and an easy-to-use risk score should be considered.

摘要

临床预测模型包括诊断预测模型,用于估计个体当前患某种疾病(如肺栓塞)的概率;以及预后预测模型,用于估计个体在特定时间段内发生特定健康结局(如10年内发生心肌梗死和中风)的概率。临床预测模型可以通过将传统回归模型(如逻辑回归和Cox回归模型)或新兴机器学习模型应用于真实世界数据(如电子健康记录和行政索赔数据)来开发。在模型推导阶段,研究人员根据文献综述和临床知识选择候选变量,并根据预定义标准(如相对风险大小和p值的阈值)或逐步回归、最小绝对收缩和选择算子(LASSO)回归等策略选择最终模型中的预测变量。在模型验证阶段,临床预测模型的性能通过拟合优度(如R值)、区分度(如受试者工作特征曲线下面积或c统计量)和校准度(如校准图和Hosmer-Lemeshow检验)来评估。添加到现有临床预测模型中的新变量的性能通过重新分类(如净重新分类改善和综合区分改善)来评估。该模型应使用原始数据进行验证,通过重采样(如交叉验证和自助法)等方法检验内部有效性,并使用其他参与者的数据检验外部有效性。为了在实际临床实践中成功实施临床预测模型,应考虑基于纸质(列线图)或基于网络的计算器等呈现方法以及易于使用的风险评分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1daf/10760493/8bbf46d3dff5/ace22010f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验