Suppr超能文献

胰岛素六聚体中苯酚逃逸的动力学。

Kinetics of Phenol Escape from the Insulin R Hexamer.

机构信息

Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.

James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States.

出版信息

J Phys Chem B. 2021 Oct 28;125(42):11637-11649. doi: 10.1021/acs.jpcb.1c06544. Epub 2021 Oct 14.

Abstract

Therapeutic preparations of insulin often contain phenolic molecules, which can impact both pharmacokinetics and shelf life. Thus, understanding the interactions of insulin and phenolic molecules can aid in designing improved therapeutics. In this study, we use molecular dynamics to investigate phenol release from the insulin hexamer. Leveraging recent advances in methods for analyzing molecular dynamics data, we expand on existing simulation studies to identify and quantitatively characterize six phenol binding/unbinding pathways for wild-type and A10 Ile → Val and B13 Glu → Gln mutant insulins. A number of these pathways involve large-scale opening of the primary escape channel, suggesting that the hexamer is much more dynamic than previously appreciated. We show that phenol unbinding is a multipathway process, with no single pathway representing more than 50% of the reactive current and all pathways representing at least 10%. We use the mutant simulations to show how the contributions of specific pathways can be rationally manipulated. Predicting the net effects of mutations is more challenging because the kinetics depend on all of the pathways, demanding quantitatively accurate simulations and experiments.

摘要

胰岛素的治疗制剂通常含有酚类分子,这会影响其药代动力学和保质期。因此,了解胰岛素和酚类分子的相互作用有助于设计改进的治疗方法。在这项研究中,我们使用分子动力学来研究从胰岛素六聚体中释放的苯酚。利用分析分子动力学数据的最新方法进展,我们扩展了现有的模拟研究,以确定和定量表征野生型和 A10 Ile→Val 和 B13 Glu→Gln 突变胰岛素的六种苯酚结合/解吸途径。这些途径中的许多都涉及主要逃逸通道的大规模打开,这表明六聚体比以前认为的更加动态。我们表明,苯酚解吸是一个多途径的过程,没有任何单一途径代表超过 50%的反应电流,所有途径都至少代表 10%。我们使用突变体模拟来展示如何合理地操纵特定途径的贡献。预测突变的净效应更加具有挑战性,因为动力学取决于所有途径,这需要进行定量准确的模拟和实验。

相似文献

1
Kinetics of Phenol Escape from the Insulin R Hexamer.
J Phys Chem B. 2021 Oct 28;125(42):11637-11649. doi: 10.1021/acs.jpcb.1c06544. Epub 2021 Oct 14.
2
Binding of phenol to R6 insulin hexamers.
Biopolymers. 1999;51(2):165-72. doi: 10.1002/(SICI)1097-0282(1999)51:2<165::AID-BIP6>3.0.CO;2-X.
3
Ligand escape pathways and (un)binding free energy calculations for the hexameric insulin-phenol complex.
Biophys J. 2008 Nov 1;95(9):4193-204. doi: 10.1529/biophysj.108.139675. Epub 2008 Aug 1.
4
Structural transition in the metal-free hexamer of protein-engineered [B13 Gln]insulin.
Biol Chem Hoppe Seyler. 1989 Sep;370(9):1045-53. doi: 10.1515/bchm3.1989.370.2.1045.
6
Role of B13 Glu in insulin assembly. The hexamer structure of recombinant mutant (B13 Glu-->Gln) insulin.
J Mol Biol. 1992 Dec 20;228(4):1163-76. doi: 10.1016/0022-2836(92)90323-c.
7
Hierarchical modeling of phenolic ligand binding to 2Zn--insulin hexamers.
Biochemistry. 1996 Apr 30;35(17):5366-78. doi: 10.1021/bi9600557.
8
Mechanisms of stabilization of the insulin hexamer through allosteric ligand interactions.
Biochemistry. 1997 May 13;36(19):5837-45. doi: 10.1021/bi963038q.
9
Structure and dynamics of a protein assembly. 1H-NMR studies of the 36 kDa R6 insulin hexamer.
J Mol Biol. 1996 Apr 26;258(1):136-57. doi: 10.1006/jmbi.1996.0239.

引用本文的文献

1
Temperature-dependent fold-switching mechanism of the circadian clock protein KaiB.
Proc Natl Acad Sci U S A. 2024 Dec 17;121(51):e2412327121. doi: 10.1073/pnas.2412327121. Epub 2024 Dec 13.
3
Predicting rare events using neural networks and short-trajectory data.
J Comput Phys. 2023 Sep 1;488. doi: 10.1016/j.jcp.2023.112152. Epub 2023 May 9.
4
Progress in Simulation Studies of Insulin Structure and Function.
Front Endocrinol (Lausanne). 2022 Jun 20;13:908724. doi: 10.3389/fendo.2022.908724. eCollection 2022.

本文引用的文献

1
Computational IR Spectroscopy of Insulin Dimer Structure and Conformational Heterogeneity.
J Phys Chem B. 2021 May 13;125(18):4620-4633. doi: 10.1021/acs.jpcb.1c00399. Epub 2021 Apr 30.
2
Long-Time-Scale Predictions from Short-Trajectory Data: A Benchmark Analysis of the Trp-Cage Miniprotein.
J Chem Theory Comput. 2021 May 11;17(5):2948-2963. doi: 10.1021/acs.jctc.0c00933. Epub 2021 Apr 28.
3
Insulin Dissociates by Diverse Mechanisms of Coupled Unfolding and Unbinding.
J Phys Chem B. 2020 Jul 9;124(27):5571-5587. doi: 10.1021/acs.jpcb.0c03521. Epub 2020 Jun 25.
5
Destabilization of Insulin Hexamer in Water-Ethanol Binary Mixture.
J Phys Chem B. 2019 Dec 12;123(49):10365-10375. doi: 10.1021/acs.jpcb.9b07689. Epub 2019 Dec 2.
6
Promoting transparency and reproducibility in enhanced molecular simulations.
Nat Methods. 2019 Aug;16(8):670-673. doi: 10.1038/s41592-019-0506-8.
7
Galerkin approximation of dynamical quantities using trajectory data.
J Chem Phys. 2019 Jun 28;150(24):244111. doi: 10.1063/1.5063730.
9
What Gives an Insulin Hexamer Its Unique Shape and Stability? Role of Ten Confined Water Molecules.
J Phys Chem B. 2018 Feb 8;122(5):1631-1637. doi: 10.1021/acs.jpcb.8b00453. Epub 2018 Jan 27.
10
Markov State Models: From an Art to a Science.
J Am Chem Soc. 2018 Feb 21;140(7):2386-2396. doi: 10.1021/jacs.7b12191. Epub 2018 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验