Department of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA.
Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, USA.
J Chem Phys. 2023 Jul 7;159(1). doi: 10.1063/5.0151309.
Understanding dynamics in complex systems is challenging because there are many degrees of freedom, and those that are most important for describing events of interest are often not obvious. The leading eigenfunctions of the transition operator are useful for visualization, and they can provide an efficient basis for computing statistics, such as the likelihood and average time of events (predictions). Here, we develop inexact iterative linear algebra methods for computing these eigenfunctions (spectral estimation) and making predictions from a dataset of short trajectories sampled at finite intervals. We demonstrate the methods on a low-dimensional model that facilitates visualization and a high-dimensional model of a biomolecular system. Implications for the prediction problem in reinforcement learning are discussed.
理解复杂系统中的动态是具有挑战性的,因为存在许多自由度,而对于描述感兴趣的事件最重要的自由度往往并不明显。跃迁算符的主特征函数对于可视化很有用,并且它们可以为计算统计数据(例如事件的似然和平均时间(预测))提供有效的基础。在这里,我们开发了用于计算这些特征函数(谱估计)的不精确迭代线性代数方法,并从在有限时间间隔处采样的短轨迹数据集进行预测。我们在一个便于可视化的低维模型和一个生物分子系统的高维模型上演示了这些方法。讨论了强化学习中预测问题的意义。