Suppr超能文献

具有公共不变子空间的多个异构网络的推断

Inference for Multiple Heterogeneous Networks with a Common Invariant Subspace.

作者信息

Arroyo Jesús, Athreya Avanti, Cape Joshua, Chen Guodong, Priebe Carey E, Vogelstein Joshua T

机构信息

Department of Statistics, Texas A&M University, College Station, TX, 77843.

Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, 21218, USA.

出版信息

J Mach Learn Res. 2021 Mar;22(141):1-49.

Abstract

The development of models and methodology for the analysis of data from multiple heterogeneous networks is of importance both in statistical network theory and across a wide spectrum of application domains. Although single-graph analysis is well-studied, multiple graph inference is largely unexplored, in part because of the challenges inherent in appropriately modeling graph differences and yet retaining sufficient model simplicity to render estimation feasible. This paper addresses exactly this gap, by introducing a new model, the common subspace independent-edge multiple random graph model, which describes a heterogeneous collection of networks with a shared latent structure on the vertices but potentially different connectivity patterns for each graph. The model encompasses many popular network representations, including the stochastic blockmodel. The model is both flexible enough to meaningfully account for important graph differences, and tractable enough to allow for accurate inference in multiple networks. In particular, a joint spectral embedding of adjacency matrices-the multiple adjacency spectral embedding-leads to simultaneous consistent estimation of underlying parameters for each graph. Under mild additional assumptions, the estimates satisfy asymptotic normality and yield improvements for graph eigenvalue estimation. In both simulated and real data, the model and the embedding can be deployed for a number of subsequent network inference tasks, including dimensionality reduction, classification, hypothesis testing, and community detection. Specifically, when the embedding is applied to a data set of connectomes constructed through diffusion magnetic resonance imaging, the result is an accurate classification of brain scans by human subject and a meaningful determination of heterogeneity across scans of different individuals.

摘要

用于分析来自多个异构网络数据的模型和方法的发展,在统计网络理论以及广泛的应用领域中都具有重要意义。尽管单图分析已得到充分研究,但多图推断在很大程度上尚未被探索,部分原因是在适当建模图差异的同时保持足够的模型简单性以使估计可行存在内在挑战。本文通过引入一种新模型——公共子空间独立边多重随机图模型,恰好解决了这一差距,该模型描述了一组异构网络,这些网络在顶点上具有共享的潜在结构,但每个图的连接模式可能不同。该模型涵盖了许多流行的网络表示,包括随机块模型。该模型既足够灵活以有意义地考虑重要的图差异,又易于处理以允许在多个网络中进行准确推断。特别是,邻接矩阵的联合谱嵌入——多重邻接谱嵌入——导致对每个图的潜在参数进行同时一致估计。在适度的额外假设下,估计值满足渐近正态性,并在图特征值估计方面有所改进。在模拟数据和真实数据中,该模型和嵌入都可用于许多后续的网络推断任务,包括降维、分类、假设检验和社区检测。具体而言,当将该嵌入应用于通过扩散磁共振成像构建的连接组数据集时,结果是按人类受试者对脑部扫描进行准确分类,并对不同个体的扫描之间的异质性进行有意义的确定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b00/8513708/b64d117348bd/nihms-1737656-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验