Suppr超能文献

多种宏基因组学流程在理解低生物量航天器装配设施微生物多样性方面的表现

Performance of Multiple Metagenomics Pipelines in Understanding Microbial Diversity of a Low-Biomass Spacecraft Assembly Facility.

作者信息

Wood Jason M, Singh Nitin K, Guan Lisa, Seuylemezian Arman, Benardini James Nick, Venkateswaran Kasthuri

机构信息

Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States.

出版信息

Front Microbiol. 2021 Sep 28;12:685254. doi: 10.3389/fmicb.2021.685254. eCollection 2021.

Abstract

NASA planetary protection (PP) requires an assessment of the biological contamination of the potential microbial burden on spacecraft destined to explore planetary bodies that may harbor signs of life, like Mars and Europa. To help meet these goals, the performance of multiple metagenomic pipelines were compared and assessed for their ability to detect microbial diversity of a low-biomass clean room environment used to build spacecraft destined to these planetary bodies. Four vendors were chosen to implement their own metagenomic analysis pipeline on the shotgun sequences retrieved from environmental surfaces in the relevant environments at NASA's Jet Propulsion Laboratory. None of the vendors showed the same microbial profile patterns when analyzing same raw dataset since each vendor used different pipelines, which begs the question of the validity of a single pipeline to be recommended for future NASA missions. All four vendors detected species of interest, including spore-forming and extremotolerant bacteria, that have the potential to hitch-hike on spacecraft and contaminate the planetary bodies explored. Some vendors demonstrated through functional analysis of the metagenomes that the molecular mechanisms for spore-formation and extremotolerance were represented in the data. However, relative abundances of these microorganisms varied drastically between vendor analyses, questioning the ability of these pipelines to quantify the number of PP-relevant microorganisms on a spacecraft surface. Metagenomics offers tantalizing access to the genetic and functional potential of a microbial community that may offer NASA a viable method for microbial burden assays for planetary protection purposes. However, future development of technologies such as streamlining the processing of shotgun metagenome sequence data, long read sequencing, and all-inclusive larger curated and annotated microbial genome databases will be required to validate and translate relative abundances into an actionable assessment of PP-related microbes of interest. Additionally, the future development of machine learning and artificial intelligence techniques could help enhance the quality of these metagenomic analyses by providing more accurate identification of the genetic and functional potential of a microbial community.

摘要

美国国家航空航天局(NASA)的行星保护要求对前往可能存在生命迹象的行星体(如火星和木卫二)进行探索的航天器上潜在微生物负荷的生物污染情况进行评估。为了帮助实现这些目标,对多个宏基因组学流程的性能进行了比较和评估,以考察它们检测用于建造前往这些行星体的航天器的低生物量洁净室环境中微生物多样性的能力。选择了四家供应商,让他们在从NASA喷气推进实验室相关环境中的环境表面获取的鸟枪法序列上实施各自的宏基因组分析流程。由于每个供应商使用的流程不同,在分析相同的原始数据集时,没有一家供应商呈现出相同的微生物图谱模式,这就引发了一个问题,即是否有单一流程适用于未来的NASA任务。所有四家供应商都检测到了感兴趣的物种,包括形成孢子的细菌和极端耐受力细菌,这些细菌有可能搭乘航天器并污染所探索的行星体。一些供应商通过对宏基因组的功能分析表明,数据中体现了孢子形成和极端耐受力的分子机制。然而,这些微生物的相对丰度在供应商的分析之间差异极大,这让人质疑这些流程量化航天器表面与行星保护相关微生物数量的能力。宏基因组学为获取微生物群落的遗传和功能潜力提供了诱人的途径,这可能为NASA提供一种可行的方法来进行用于行星保护目的的微生物负荷检测。然而,未来需要开发诸如简化鸟枪法宏基因组序列数据处理、长读长测序以及包含更多内容且经过整理和注释的更大微生物基因组数据库等技术,以验证并将相对丰度转化为对与行星保护相关的目标微生物的可操作评估。此外,机器学习和人工智能技术的未来发展可以通过更准确地识别微生物群落的遗传和功能潜力来帮助提高这些宏基因组分析的质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c24/8508200/6b8343e8c941/fmicb-12-685254-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验