Fakultät für Physik, Ludwig-Maximilians-Universität, Schellingstrasse 4, 80799 München, Germany.
Nature. 2010 Apr 22;464(7292):1170-3. doi: 10.1038/nature08988. Epub 2010 Mar 31.
Atom chips provide a versatile quantum laboratory for experiments with ultracold atomic gases. They have been used in diverse experiments involving low-dimensional quantum gases, cavity quantum electrodynamics, atom-surface interactions, and chip-based atomic clocks and interferometers. However, a severe limitation of atom chips is that techniques to control atomic interactions and to generate entanglement have not been experimentally available so far. Such techniques enable chip-based studies of entangled many-body systems and are a key prerequisite for atom chip applications in quantum simulations, quantum information processing and quantum metrology. Here we report the experimental generation of multi-particle entanglement on an atom chip by controlling elastic collisional interactions with a state-dependent potential. We use this technique to generate spin-squeezed states of a two-component Bose-Einstein condensate; such states are a useful resource for quantum metrology. The observed reduction in spin noise of -3.7 +/- 0.4 dB, combined with the spin coherence, implies four-partite entanglement between the condensate atoms; this could be used to improve an interferometric measurement by -2.5 +/- 0.6 dB over the standard quantum limit. Our data show good agreement with a dynamical multi-mode simulation and allow us to reconstruct the Wigner function of the spin-squeezed condensate. The techniques reported here could be directly applied to chip-based atomic clocks, currently under development.
原子芯片为超冷原子气体的实验提供了一个通用的量子实验室。它们已被用于涉及低维量子气体、腔量子电动力学、原子-表面相互作用以及基于芯片的原子钟和干涉仪的各种实验中。然而,原子芯片的一个严重限制是,迄今为止,还没有实验上可用的控制原子相互作用和产生纠缠的技术。这些技术能够实现基于芯片的纠缠多体系统的研究,是原子芯片在量子模拟、量子信息处理和量子计量学中的应用的关键前提。在这里,我们报告了通过控制具有状态相关势的弹性碰撞相互作用,在原子芯片上产生多粒子纠缠的实验。我们使用该技术生成了双组分玻色-爱因斯坦凝聚体的自旋压缩态;这种状态是量子计量学的有用资源。观测到的自旋噪声降低了-3.7 +/- 0.4 dB,加上自旋相干性,意味着凝聚体原子之间存在四部分纠缠;这可以通过相对于标准量子极限将干涉测量提高-2.5 +/- 0.6 dB 来实现。我们的数据与动态多模模拟吻合较好,使我们能够重建自旋压缩凝聚体的魏格纳函数。这里报道的技术可以直接应用于正在开发中的基于芯片的原子钟。