Suppr超能文献

通过对接和分子动力学模拟的组合进行ω-转氨酶特异性的计算预测。

Computational Prediction of ω-Transaminase Specificity by a Combination of Docking and Molecular Dynamics Simulations.

机构信息

Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.

Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.

出版信息

J Chem Inf Model. 2021 Nov 22;61(11):5569-5580. doi: 10.1021/acs.jcim.1c00617. Epub 2021 Oct 15.

Abstract

ω-Transaminases (ω-TAs) catalyze the conversion of ketones to chiral amines, often with high enantioselectivity and specificity, which makes them attractive for industrial production of chiral amines. Tailoring ω-TAs to accept non-natural substrates is necessary because of their limited substrate range. We present a computational protocol for predicting the enantioselectivity and catalytic selectivity of an ω-TA from with different substrates and benchmark it against 62 compounds gathered from the literature. Rosetta-generated complexes containing an external aldimine intermediate of the transamination reaction are used as starting conformations for multiple short independent molecular dynamics (MD) simulations. The combination of molecular docking and MD simulations ensures sufficient and accurate sampling of the relevant conformational space. Based on the frequency of near-attack conformations observed during the MD trajectories, enantioselectivities can be quantitatively predicted. The predicted enantioselectivities are in agreement with a benchmark dataset of experimentally determined % values. The substrate-range predictions can be based on the docking score of the external aldimine intermediate. The low computational cost required to run the presented framework makes it feasible for use in enzyme design to screen thousands of enzyme variants.

摘要

ω-转氨酶(ω-TAs)催化酮转化为手性胺,通常具有高对映选择性和特异性,这使得它们成为手性胺工业生产的有吸引力的选择。由于 ω-TAs 的底物范围有限,因此需要对其进行定制以接受非天然底物。我们提出了一种计算方案,用于预测不同底物的 ω-TA 的对映选择性和催化选择性,并将其与文献中收集的 62 种化合物进行基准测试。罗塞塔生成的包含转氨酶反应的外部亚胺中间物的复合物被用作多个短独立分子动力学(MD)模拟的起始构象。分子对接和 MD 模拟的结合确保了对相关构象空间的充分和准确采样。基于 MD 轨迹中观察到的近攻击构象的频率,可以定量预测对映选择性。预测的对映选择性与实验确定的 % 值的基准数据集一致。底物范围的预测可以基于外部亚胺中间物的对接得分。运行所提出的框架所需的计算成本低,使得它在手性酶设计中筛选数千种酶变体成为可行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1a7/8611723/d5ac9b7579aa/ci1c00617_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验